makeblock

education

mBot2

Getting Started Activities

Getting Started Activities

© education.makeblock.com

makeblock
education
Contents

Introduction

Lesson 1 - Let's move

Lesson 2 — Sensing = data
Lesson 3 — Listen to mBot2
Lesson 4 — Seeing with sound
Lesson 5 - Sightseeing

Lesson 6 — Careful drive

Lesson 7 — A network game
Lesson 8 - mBot2 at your service

Lesson @ - mBot2 in the wild

© education.makeblock.com

1

21

37

46

54

69

82

92

10

makeblock

education

@ Introduction

1. Pedagogical approach

With Makeblock Education, the development of knowledge and skills is the combination of
digital and physical tools that work together to provide a hands-on learning experience.
Students actively engage with the lesson’s topic in order to solve a problem or create
something new. It allows them to develop theoretical concepts from practical experience as
well as transfer and apply these concepts back to practical tasks, deepening their
understanding. This includes learning from mistakes through detailed and systematic

analysis of the processes involved.

With hands-on learning, students manage and foster their education process by playing a

more active role during the class, rather than just listening to a lecture from the teacher.

This introduction will give an overview of the new features of mBot2 and the benefits for its
use in education. It will briefly show the steps to start programming the robot with mBlock5,
Makeblock Education’s block-based editor, and then portrait the individual Getting Started
Activities. These activities are a staged learning experience and cover the new features step
by step. Starting with real-world references in the tasks given, the background of sensors,
actuators and computational thinking are discussed along with sample codes that are easy
to understand and expand for each task. The activities always suggest to involve further
digital media and think ahead to apply the learning to new challenges and end with a

reflection of the activity.

2. An introduction to mBot2

mBot2 is a next-generation educational robot designed for Computer Science and STEAM
learning. Having extended capabilities makes it an ideal entry-level solution for lower
secondary education, but it can also go all the way to upper secondary and beyond. mBot2 is
designed for students to carry out interactive and smart lessons that are engaging, fun and

reflect real-world applications of cutting-edge technologies.

mBot2 is powered by CyberPi, a powerful and versatile microcontroller. Its integrated sensors
and actuators - like microphone and speaker, inertial measurement unit with gyroscope ad
acceleration sensor, a light sensor, buttons for menu operations and a color display — are
complemented by an ultrasonic range sensor and a line-following sensor with four RGB

elements.

Next to this range of sensors and actuators, the mBot2 is capable of Wi-Fi communication,
allow for a wide range of applications on curriculum topics for Coding, Robotics, Data
Science and Artificial Intelligence, in connection with other subjects such as Math, Physics,

etc.

Teachers can, for instance, wirelessly connect multiple mBots in a classroom, to create a local
network of robots that communicate between themselves, share information, and perform
tasks. They can also use a standalone CyberPi as a smart device to communicate with the
mBot2, creating a smart ecosystem or a fun remote controller. When connected to the
Internet, mBot2 can perform advanced features such as speech recognition or communicate

with the cloud to obtain information.

The sensors and actuators specific to the mBot2 will be introduced here in the following sub-
sections and the full range will be part of the getting started activities. You will find an

overview of them at the end of this document as well.
Here is an overview of the different components that the mBot2 consists of:

CyberPi

ESP-32 microprocessor for wireless
communication. Compatibility with
block-based and Python coding

mBot2 shield

Compatible with a wide variety of
external components, includes a
built-in rechargeable battery

Ultrasonic sensor 2

Object detection is accompanied
with 8 programmable LEDs for an
enhanced interaction

Encoder motors

Measure rotation to 1-degree
accuracy, distance travelled and
precisely control speed up to 200RPM

Quad RGB sensor

4 sensor probes support color
recognition, as well as basic and
advanced line detection programs

© education.makeblock.com 3

makeblock

education

mBot2 motors are equipped with optical encoders that enable high accuracy control. With
this, students can precisely control the rotation, speed and position of the wheels and the
robot. Additionally, the motors can also be used as servos, and even as knobs, to feedback

data to the system, just like a sensor.

Thanks to these features, lessons can be more realistic and educational in comparison with
robots that have less control of their motors. Activities can do a proper integration of Math
concepts, for instance, by driving precise distances, calculating exact turns and even mapping

a route through a maze and transferring the results back to the computer.

Lesson 1 from the Getting Started Activities offers an introduction to the different coding
blocks for the Encoder Motors in the programming environment mBlock, as well as an easy

assignment for students to explore the possibilities by themselves.

The ultrasonic sensor that comes with the mBot2 can perform more accurate and consistent
readings than its predecessors. Additionally, it incorporates blue LEDs that support new
ways of interaction with the robot. Students can use these additional lights to display

responses.

mBot2 integrates another advanced component: the Quad RGB sensor. This sensor has the
capacity to not only identify colors, but also to track lines in order to help the mBot2 follow

paths, or detect junctions or 90° turns - all at the same time.

The basic functions can be carried out with little prior knowledge, but due to its advanced

features, it's important to know what are the best practices in order to make the most out of

the sensor.

Instead of using 2 sensors to track a single line in front of the robot, the Quad RGB sensor
has 4 sensors that allow it to identify a broader range of conditions: while following a track,
the sensor can identify junctions on the left, right or even both sides, which means that the
mBot2 can navigate through more complex maps than other robots. And since each of the

four sensors is a color sensor of its own, colored marks can indicate positions on the map -

the robot "knows" its location.

Color light
sensor 4x

Color LED 4x

© education.makeblock.com

makeblock

education

This wider detection range can be used for maps with a network of lines with multiple
mBot2s moving between different stations as in a "Smart Warehouse", or simulate the roads

in a city, with its different traffic signals and traffic rules.

Previous line following sensors used infrared light that is not visible to the human eye. These
sensors instead operate on a single wavelength, while the new one looks at three different
wavelengths simultaneously, just like the human eye: red, green and blue. A mixture of the
intensity of theses wavelengths is interpreted by our brain as color perception. The sensor
works similar and next to perceiving colors, it tries to differentiate a track from the

background for line-following tasks.

With the provided map, we have extra color markers inside the track to trigger additional
actions, if programmed accordingly. In order to make the sensor interpret these colors as
part of the line, it must be calibrated to the brightest color on the track, which is yellow.
Place the sensor over the yellow color code while the mBot2 is switched on and double-click
the small button on the top side of the sensor (see the image below). As the LEDs will start
flashing, swipe the sensor across the color and white background until the flashing stops (2-3
sec.). After that, the color will be regarded as part of the track (for an in-depth discussion

see the additional info on the Quad-RGB-sensor in different environments and lesson 5).

Lesson 5 from the Getting Started Activities provides an explanation of the different blocks
that are available in mBlock for the Quad RGB sensor, and students can also practice their

learnings with a simple assignment.

The scope of activities can be further expanded by combining the mBot2 with the mBuild
modules developed by Makeblock Education. Thanks to their internal Micro-Controller Unit
(MCU), these smart sensors and actuators can be directly connected without the need of
complex wiring or setups, allowing students to spend more time ideating and creating. These
components use a single type of connector that can't be reversed, so students can make no
mistakes in connecting them. This gives them more confidence and therefore a better

learning experience.

Some examples of the sensors and actuators are: smart camera, multi touch, slider,
temperature sensor, etc. With all these sensors, teachers have a variety to choose from for
creating real-world scenarios and adjust to teaching and curriculum needs — and students’

interests.

But with the mBot2 alone you already have plenty of opportunities (see the activities), plus
the mBot2 Shields offers further connections: the integrated 2-pin and 3-pin interfaces can
be used to directly connect DC motors, servos, LED strips, and even third-party components
that are commonly available, including a wide variety of Arduino-compatible sensors, or even

make custom ones.

© education.makeblock.com 7

makeblock

education

3. Programming mBot2

mBlock is the coding platform for mBot2, designed to deliver an enhanced educational
experience, and a continuous path of growth for the student. Thanks to the extensions in
mBlock5, educators can easily include some of the latest and most influential technologies in
their lessons, such as the Internet of Things or Artificial Intelligence. Also, by integrating both
block-based coding and Python, mBlock5 offers a learning path for students to develop from

basic to professional computational skills.

mBlock5 can be used as installed software on computers, laptops, and mobile devices, or on a
web browser. It's compatible with different operating systems such as Windows, Mac, Linux,
Chromebook, iOS, Android. Being open source, mBlock5 offers the opportunity to create new
extensions for software and hardware, which means that educators can customize the
coding tools according to their needs. Users can also search and share projects in the Math

Makeblock Community.

To start programming with mBlock is as easy as dragging and dropping blocks. The mBlock

interface has the following elements:

Set your account
to access the cloud
services

Select language, open or save a file, find example programs, etc.

makeblock | mBlock ®. & File & Edit Untitied @ Save > Courses W Tutorials @8 Feedback ... u Python Editor

=] OB play hiv untildone Blocks Python
Audio
A - [
L]
T8 start recording
[=:}

Displa:
SN < stop recording
(=]
e (my | om] [o o RIS 0 & play recording until done
[
Sensing
= . B play recording
Devices Sprites Background 3

Sensing

x a
['(é:'a - a8 play note () for (BB beat
CyberPi .." LAN

e Connect your device =]
8 OB increase audio speed by () %
add How to use device?

OB play snare v for (L) beat
%
Mode Switch @ g ; 9
ode Swilch & loT OB set audio speed to @ %
%

Upload Live
ok B audio speed
extension T8 increase volume by o

Stage area Block area Script area

View project stage, Library of code blocks Drag the coding blocks to this
customize sprites and | sorted by color-coded area and arrange them to
backgrounds, connect | categories. control the stage or connected
devices. devices.

Extension center

Detailed information about the characteristics and use of mBlock can be found in

https://education.makeblock.com/help/cateqgory/mblock-block-based/

4. Outline of activities

The mBot2 Getting Started Activities are developed for students between 11 to 14 years old

and their educators. Overall, the lessons are designed to be accessible, despite having

different and increasing complexity levels.

Each lesson introduces a different and exciting feature from the mBot2, along with some

basic concepts of programming. The knowledge gained from each lesson helps to build

towards more advance activities, while the lessons increase in complexity as the learner

moves on. For example, the movements of the robot are introduced in Lesson 1 and this is

used in many of the subsequent lessons. The possibilities of the Quad RGB sensor are

presented in lesson 5, to be later used in lesson 8.

The lessons are briefly described below:

Activity Name

Description

Key concepts

1. Let's move

Students discover the mBot2 and the mBlock
software and learn how to drive the robot with
precision. This knowledge will be used in most of
the following lessons. Students will also design a
simple maze and program the mBot2 to (manually)
navigate through it.

Precise movements and
corresponding coding blocks.

2. Sensing = data

Students will work with the different sensors
integrated in the mBot2; they will learn how to use
them with their corresponding code blocks, and to
visualize data from the sensors on the integrated
full color display.

Mode of operation of the sensors.
Different approaches to display
and visualize data on the display.
Differences between Live and
Upload mode in mBlock 5.

3. Listen to mBot2

Students will learn how to control the speaker and
microphone with the code blocks in mBlock 5. They
will also create a program where the mBot2 plays a
recorded sound if it meets a certain condition while
driving around.

Text to speech (TTS) and Voice
recognition (Speech to Text, STT)
using the build-in speaker and
microphone. Running multiple
tasks side by side.

4. Seeing with sound

Students will learn what ultrasound is, how it is
used in a sensor, and they will also create a
program to make the mBot2 drive in a loop by
turning after detecting obstacles on the road.

Detecting an obstacle or a range
by using the ultrasonic sensor.
Using loops and conditional
statements for making the mBot2
drive while avoiding obstacles.

5. Sightseeing

Students will learn how a color sensor works, how
are they used in real life, and they will program the
mBot2 to become a tour bus that visits different
landmarks in a city. This knowledge will be also
applied in lessons 7 and 8.

Mode of operation (physics of
light) of the color sensor/line
follower. Color and line
identification- Making the mBot2
follow a line and having it perform
actions based on color detection.

© education.makeblock.com

https://education.makeblock.com/help/category/mblock-block-based/

makeblock

education

6. Careful drive

Students will learn how to use the gyroscope
accelerometer of the mBot2 and its code blocks,
and they will program the mBot2 to adjust its
driving behavior if it detects inclinations on the
road.

Mode of operation of gyroscopes
and accelerometers (as Inertial
Measurement Units, IMU). Coding
the mBot2 to adapt to road
conditions based on IMU data.

7. A network game

Students will learn to have multiple mBot2s
communicating with each other wirelessly without
the need of a WIFI access point. They will program
a simple game where multiple mBot2s search for a
color and the first one to find it wins. This
knowledge will also be used in lesson 8.

Wireless data transfer in ad-hoc
networks. Data exchange in loops
and events.

8. mBot2 at your
service

By learning how to set up a WIFI connection with
the mBot2, students will also learn to use onboard
speech recognition, and they will apply this
knowledge in an activity where the mBot2 becomes
a robot waiter who talks to its customers.

Using WIFI infrastructure mode
with the mBot2 for speech
recognition and speech synthesis.
Offloading heavy computing like
speech recognition to cloud
services.

Structuring code by applying "own
blocks" (functions).

9. mBot2 in the wild

In this special lesson, students will learn some
principles of Artificial Intelligence by using the
Teachable Machine extension in mBlock5. They will
apply their knowledge to recreate a natural
ecosystem where the mBot2 behaves like an
animal.

Learning about Machine Learning
and applying it with local
processing only on block-based
programming.

Establishing a new
communication protocol between
the mBot2 and the computer.

Throughout the lessons students are encouraged, with the consent of educators, to

document their learning outcomes by video and publish them, as a way to gain pride of their

work and lead their conversation about Computer Science and STEAM in the classroom.

Lesson 1:

Let's move!

Subject: STEAM Grade(s): 5" and up

Duration: 45 minutes Difficulty: Beginner

By the end of this lesson, students will be able to:

e Drive the mBot2 with precision.

Robots are autonomous machines that replace human effort; they can perceive their
environment and perform computer programs to make decisions and take actions. A
computer program is a set of instructions and conditions run by a computer to perform a
task. You may think you have never seen or used a robot, but that chance is slim. Robots can
take many different shapes and have different capabilities depending on their context. For
example, robots are present in households, such as the vacuum cleaner robot or a lawn
mowing robot; you can also find them in
factories assembling products. We have even

sent robots to other planets.

Focus

By the end of the lesson, students will know:

¢ What movements can mBot2 do
e What different programming blocks

you can use to make the mBot2 move

© education.makeblock.com 7

makeblock

education

What do you need?

e PC or laptop (with USB output) with the mBlock software installed, the web version

(also for ChromeBook), or a tablet with the mBlock app installed

e The mBot2 with a CyberPi
e A USB-C cable or Makeblock Bluetooth dongle

e A3 paper

e Pens

B Lesson plan

Duration

Content

5 minutes

1. Warming up
e Sensors and data in everyday life.
e What is the CyberPi?

10 minutes

2. Hands-on
e Getting acquainted with the different programming blocks of the
mBot2.

25 minutes

3. Trying out

e Programming your own robot through a self-made maze.

5 minutes

4. Wrap-up
e Showtime: show what you did with your robot in a fun, short movie
for later discussion.
e If your teacher allows, share the end result on social media with
the hashtag #mBot2moves
e Reflection: What are you most proud of? What would you like to

improve about your robot?

:= Activities

1. Warming up

(5 min)

Step 1: Warming up
This step consists of two parts:
1. Robots in everyday life

2. Getting to know the mBot2

1. Robots in everyday life

We have robots in many different places. Some
people have them in their homes and others work
with them every day. Robots can take many
different shapes and have different capabilities
depending on their context. Can you think of three
robots that you have to deal with (regularly) in

everyday life?

There are probably many more robots that have been developed that you have never seen.

Search the Internet for three more robots that you can use in everyday life.

There is a good chance that you will have to deal with robots later on you professional or
personal life. There are robots working in many different companies. Usually, these robots
perform tasks that are repetitive, that need to be done with great accuracy, or that are
dangerous. In this lesson we will be working mainly on programming a robot to move

accurately. Can you think of three professions or businesses where it is very important for a

robot to work very accurately?

© education.makeblock.com

makeblock

education

2. Getting to know the mBot2
The mBot2 is a programmable robot equipped with different components that allow it to
sense, act and communicate with its environment. The mBot2 is intended for students to learn
about Computer Science and Technology, including ways that you can use a robot in real life.
The mBot2 can be programmed with the help of mBlock. In mBlock, programming can be as
easy as dragging and assembling blocks. As you will see in this lesson, you can, for instance,
program the mBot2 to drive through a maze - with your help (not autonomously). mBot2
comes with a pair of special motors, which
can record the rotation of the axle and
therefore the speed and distance the robot
has travelled. They are called encoder
motors due to the sensor that is built-in
(encoder). This type of motors allows to
control specific parameters such as the

rotation angle and speed of the motors.

You will learn how to make use of these

motors in the following steps.

2. Hands-on

(10 min)

Step 2: Hands-on
This step consists of two parts:
1. Getting acquainted with the different programming blocks of the mBot2.

2. Recreating and testing some programming examples to control the mBot?2.

1. Getting acquainted with the different programming blocks of the mBot2
As you observed previously, robots can be used in many different ways. If you have thought of
a purpose for a robot, most likely it means that you know what the robot needs to do to help

you, and some of these tasks might need to be executed with certain precision.

When you start programming the mBot2, you will notice that there are

=0

many different coding blocks you can use to make the robot move. You

will find these blocks in mBlock 5 in the category 'Chassis'. These coding mBot2
blocks are blue. Chassis

Below you can see some examples of the coding blocks needed to make the robot move. Some
of them look similar, yet they all do something different. For this lesson, we will work in Live
mode. Make sure the correct mode is selected in the software. The differences between Live

mode and Upload mode will be explained in lesson 2.

Code block:

&2 moves forward v at @ RPM for o secs

This code block allows you to move the mBot2 forward, backward, left and right at a specific
rotational speed of the wheels and for a number of seconds.

The example below shows how you can make the mBot2 move for two seconds at a speed of
50 rotations per minute. This is useful, for example, when the mBot2 needs to push a load

forward.

when space v key pressed

<% moves forward v at @ RPM for o secs

Code block:

&b stop encoder motor all v

This code block allows you to make your robot stop moving. This can be a useful block during
a testing phase. If a program does not work as expected you can use this block to make the
robot stop immediately.

For example, you can make the robot stop when the A button of the CyberPi is pressed. To

do this, use the programming example below.

OB when button A v pressed

&% stop encoder motor all »

© education.makeblock.com 15

makeblock

education

Code block:

6 turns left » @ ° until done

With this code block you can make the mBot2 rotate by a number of degrees, and you can
choose whether the rotation should be to the left or to the right.

When the programming example below is set, the mBot2 can be controlled by using the
arrow keys. When pressing the right arrow, the mBot2 will turn 90 degrees to the right,

when pressing the left arrow, it will turn 90 degrees to the left.

when left arrow v key pressed

oo turns left v @ ° until done

when right arrow v key pressed

& turns right v @ ° until done

Code block:

0 moves forward v @[cm v until done

With this code block you can make the mBot2 move forward or backward a certain distance.
When you use the programming example below, the mBot2 will move 100 cm forward. To

start this, move the joystick of the CyberPi upwards.

B when joystick pulled? »

& moves forward *+ @P cm v until done

Code block:

% encoder motor EM1 *) rotates at @ RPM, encoder motor EM2 *) rotates at @ RPM

You can also control the motors of the mBot2 independently, and this is one of the blocks
which you can use for that.

In the example below, the mBot2 will move in a curve for 3 seconds before it stops. Notice
that the value for one of the motors is negative; this is because the motors are mounted in
opposite directions, so in order to move the robot in one direction, you need to make one of

the motors rotate the opposite way. What would happen if both wheels rotate at 40 RPM?

BB when button B v pressed

2% encoder motor EM1 ¥) rotates at @ RPM, encoder motor EM2 ¥) rotates at @) RPM

&% stop encoder motor all »

Code block:

&% encoder motor (1) EM1 v) rotated angle (°)

Because the motors of mBot2 can measure their speed and rotation, you can also read
these values. The speed measured is the rotational speed in Rounds per Minute (360° =1
round; in science, it is more common to use “degree per second” (1 RPM = 6° per second)). In
mBlock 5, if you tick the box next to this block, you can read the values on the stage above
the panda. The programming example below changes the values of the rotation back to
zero, and then orders the mBot2 to move forward for one second. What value do you read

on the stage after the robot moved?

OB when joystick middle pressed v

% reset encoder motor all v) rotated angle

moves forward v at @ RPM for o secs

© education.makeblock.com 17

makeblock

education

2. Recreating and testing some programming examples to control the mBot2.
Below you can see some pairs of blocks. Try out each pair side by side. What happens? What

are the differences between the code blocks?

Option 1 Option 2

&t moves forward v at @ RPM &t moves forward v at @ RPM for o Secs

&b turns left » @ ° until done & turnsleft v at @ RPM for n secs

&% moves forward v 100 cm v until done &% encoder motor EM1 *) rotates at a % power, encoder motor EM2 *) rotates at m % power

3. Trying out

(25 min)

Step 3: Trying it out

It is now time to put your mBot2 to work. Take an A3 paper and draw a maze that your mBot2

has to drive through. Don't make it too complicated and take into account the width of the
robot. The mBot2 doesn't have to find the right route by itself. The mBot2 just needs to drive

the route that you program. Need inspiration? Below you can see an example.

1\
1

FINISH

Use the knowledge you gained in 'Step 2' of this lesson. Of course, you can do plenty of

experimenting yourself with the different programming examples in mBlock5.

When doing this assignment, it is helpful to use the following step-by-step plan.

Explanation

Step 1: What do you want to do? e What route do you want the mBot2 to drive?

e What parts does the maze consist of?

e How long are the distances the robot needs to
travel?

e Does the robot also need to make turns? Which

way and by how many degrees?

Step 2: What do you need? e What do you need in addition to the mBot2?
Step 3: What code blocks do you e How are you going to make the mBot2 drive?
need to make the mBot2 drive? e What code blocks will you use?

e Make a brief description on how your program
works (pseudocode/natural language, flowchart
or UML)

o If you need further explanation, you can discuss
with your fellow students, the teacher, or do a
research on the topic. There is help available for

every code block in mBlock as well.

Step 4: Testing and e |s the first version ready? Test it! During the
implementation testing round, write down areas of
improvement.

e Work on the improvement points until your

mBot2 drives through your maze without errors.

Is it possible to get the mBot2 to drive through the maze without a hitch? Then challenge

yourself with a more difficult maze. Or have one of your classmates work out a route for you.

© education.makeblock.com 19

makeblock
education

Step 4: Wrap-up

Did you succeed in driving the robot through the maze completely without error?

In this lesson you have been introduced to robots in everyday life and to the mBot2. You know

how to control the movements of mBot2 and which programming blocks you can use for this.

It is now time for a short reflection. Think on your own and discuss with the group:

What do you think turned out well?

What could be better?

Which parts of the lesson did you find easy and which did you find more difficult?
What would you like more explanation about?

Who could help you with that?

Lesson 2:

Sensing = data

Subject: STEAM Grade(s): 5" and up

Duration: 45 Minutes Difficulty: Beginner

At the end of this lesson, students will be able to:

e Recognize and use the code blocks for operating
the sensors

e Show the data from the sensors on the display of
the mBot2

e Build your own computer program in mBlock for

the mBot2 to control the sensors and show the

data on the display

A robot can be a fun toy, but did you know that you can also use a robot in research? A robot
has several sensors (=senses) with which it can perceive its surroundings and also collect
data. For example, you can have the mBot2 measure sound and temperature. You can read
the data on the screen of the mBot2 and use it for research into sound density or the

temperature of the classroom, for example.

Focus

At the end of this lesson, students will know:

e What sensors the mBot2 has
e How the sensors of the mBot2 work
e What the difference is between live mode and upload mode

e How to show the data from the sensors on the display of the CyberPi

© education.makeblock.com 21

makeblock

education

What do you need?

e PC or laptop (with USB output) with the mBlock software installed, the web version
(also for ChromeBook), or a tablet with the mBlock app installed

e The mBot2 with a CyberPi

e A USB-C cable or Makeblock Bluetooth dongle

= Lesson plan

This lesson consists of four steps and takes a total of 45 minutes.

Duration Contents

1. Warming up
e Sensors and data in everyday life.
e What is the CyberPi?

5 minutes

2. Hands-on

e Getting acquainted with the sensors of the mBot2.
. e Extend and test some programming examples of the sensors.
10 minutes) _
e Showing the data from the sensors on the display.

e Difference between live mode and upload mode.

3. Trying out
25 minutes e Writing your own program for the robot.

4. Wrap-up
e Showtime: show what you did with your robot in a fun, short movie
for later discussion.
5 minutes e If your teacher allows, share the end result on social media with
the hashtag #mBot2data
e Reflection: What are you most proud of? What would you like to

improve about your robot?

:= Activities

1. Warming up

(5 min)

Step 1: Warming up
This step consists of two parts:
1. Sensors and data in everyday life

2. What is the CyberPi?

1. Sensors and data in everyday life

Sensors that collect data are found in many different places in everyday life. Much more than
you probably think at first. For example, with the help of sensors the exterior lighting of your
house is turned on automatically when it gets dark outside. Or the heating is automatically
turned off when it gets too hot in the classroom. The amount of outdoor light and the heat in
the classroom is all recorded using sensors. Can you and your classmates think of any other

examples?

2. What is the CyberPi?
To get the mBot2 to work, you need to write a computer program. You do that in the code
editor mBlock. The computer program you write consists of a series of commands that the

mBot2 has to execute.

Mounted on the mBot2 there is a CyberPi. A

CyberPiis a small, programmable

W
3
0

microcomputer. You give the CyberPi

commands using the code blocks in mBlock.

use

The CyberPi passes these commands back to

the mBot2. You can remove the CyberPi from

the mBot2.

© education.makeblock.com 23

makeblock

education

The CyberPi has many different functions, such as a microphone, a speaker and a joystick.

There are also many sensors on the CyberPi. Take a look at the image below.

mBuild interface
for smart sensors and actuators

Built-in sound sensor

Integrated light sensor Button A (return)

Home button
(program selection,
settings and restart)

5-way
Joystick USB-C port
(power & data)

Built-in WIFI and Bluetooth Button B (confirm)

Full-color display
display of text and graphics

CyberPRi

5 RGB-LED strip Integrated speaker

Integrated Gyroscope &
accelerometer

2. Hands-on

(10 min)

Step 2: Hands-on
This step consists of four parts:
1. Getting acquainted with the sensors of the mBot2.

Extend and test some programming examples of the sensors.

2
3. Display the data from the sensors.
4

Difference between live mode and download mode.

1. Getting to know the mBot2 sensors
Every robot works with sensors. Sensors can be compared with your senses (=taste, touch,
smell, hearing, sight). Through these sensors the mBot2 'sees’' its environment. There are
different types of sensors that can make the mBot2 'see’, such as:

e Light sensor

e Sound sensor

e Gyroscope accelerometer

e Quad RGB sensor

e Timer
The table below lists the sensors of the mBot2. Each sensor is accompanied by a brief

explanation and programming example.

Sensor type What does this sensor do?

Light sensor Light has a certain strength (=light energy). The light sensor is a device
that converts light energy into electrical energy.
A light sensor is often used, for example, to:
e Automatically adjust the brightness of the display of smartphones
to the environment;
e To control the lighting in homes or to automatically switch on
headlights of vehicles
In the programming example below, the light energy of the environment
is shown on the display of the CyberPi. You can extend the programming
example so that the mBot2 stops driving, for example, when the light

energy of the environment is below a certain value, as when it gets dark.

Programming example

B show | @B ambient light intensity ' at center of screen ¥ by middle v pixel

© education.makeblock.com 25

makeblock

education

Sensor type

What does this sensor do?

Sound sensor

Sound is a mechanical vibration that propagates in waves. In the air
these are pressure and density fluctuations. If the vibration is in the
audible range (between 16 and 20000 vibrations per second) and
sufficiently intense, we can hear it as tones or sounds.
The power of the sound is called the sound intensity.
The sensor in the microphone converts the sound into an electrical signal
that can be evaluated in terms of pitch and power.
A sound sensor is often used for the following things:

e Telephone calls, sound recording

e Voice-controlled assistance systems, such as on a cell phone orina

Smart Home

In the programming example below, the sound intensity of the
environment is shown on the display of the CyberPi. You can extend the
programming example so that the mBot2 constantly measures the sound

intensity during a tour of the classroom and shows it on the display.

Programming example

OB show | @B loudness at centerofscreen v by middle v pixel

Sensor type What does this sensor do?
Gyroscope & A gyroscope meadsures tipping movements, more precisely the speed of
accelerometer turning/tipping movements. An accelerometer measures the change in

velocity. These sensors can be implemented as micromechanical

components on an electronic component. Both sensors provide different

information about the position in space.

A gyroscope is often used to, for example:

e Keep ships stable on the high seas or

e Balance a Segway or a "hoverboard" so that you don't fall over too
quickly with it

Acceleration sensors, in turn, indicate whether a smartphone is facing up

or down, or whether a vehicle is having an accident (violent, very rapid

change in speed) - in order to then trigger the airbags.

In the programming example below, the tilt movement of the mBot2 is

shown on the display. You can extend the programming example so that

the mBot2 constantly measures and records the tipping motion on the

display during a lap around the classroom.

You will learn more about this sensor and its capabilities in Lesson 6.

Programming example

when space v key pressed

i OB waveup v detected? _then

OB show @ at x o y o by middle v pixel

OB clear screen

© education.makeblock.com 27

makeblock

education

Sensor type

What does this sensor do?

Ultrasonic

sensor

Sound, which is vibration in the form of variations in density and pressure,
propagates in air at a constant speed in the form of waves (speed of
sound in air approx. 334 m/s). The higher the vibration, the higher the
sound appears - up to a limit above which people can no longer perceive
this sound. These very high vibrations are called ultrasound. Since the
speed of sound in the air is known, sound can be used to determine
distances to objects; to do this, one emits a sound and measures the time
until this sound is reflected back from the object. This reflected sound
wave is also called an echo. Ultrasounds usually are used for this purpose.
For example, an ultrasonic sensor is often used:
e for animaging procedure, e.g. in pregnancy (each pixel is a distance
measurement) or
e in the control of robots to prevent collisions
In the programming example below, the ultrasonic sensor is used to
prevent the mBot2 from driving into an obstacle. When the mBot2 is less
than 10 cm from an obstacle, the robot makes a 20° turn to the left and
then simply continues driving. You can extend this programming example
so that the mBot2 moves randomly through a classroom without
bumping into tables and chairs.

You'll learn more about this sensor and its capabilities in Lesson 4.

Programming example

when space v key pressed

B ultrasonic2 1 v distance to an object (cm) | < m then

& turns left » @ ° until done

<26 moves forward v at @ RPM

Sensor type What does this sensor do?
Quad RGB The Quad RGB sensor consists of four individual light and color sensors.
Sensor They measure the intensity of light entering the sensor from red, green

and blue areas of the light spectrum. This allows the sensor to detect
colors of objects directly in front of it, like markings on the ground, and
also allows the robot to follow a black line for orientation.
A Quad RGB sensor is widely used in applications such as:

e show a warehouse robot a way through the warehouse (also

different colors for different paths), or

e ensure that exactly the right color is used during painting
In the programming example below, the mBot2 drives forward when the
robot sees the color white. You can extend the programming example so
that the mBot2 drives a route through the classroom, stops, or turns
based on different colors.

You will learn more about this sensor and its capabilities in Lesson 5.

Programming example

when space v key pressed

i Bquad rgbsensor 1% probe (2)R1 v detected white v ? Jthen

&2 moves forward v at @ RPM
else

&2 stop encoder motor all »

© education.makeblock.com 29

makeblock

education

Sensor type

What does this sensor do?

Timer

The timer is a kind of stopwatch that tells the time in seconds since the
CyberPi was turned on or reset. This counter can also be set to zero with
a command to make time measurements easier.

For example, you can use the timer to have a race of several mBots
against each other and measure exactly how fast they are at the finish
line.

The following programming example shows you how to set and use the
timer. Pressing the 'A' key resets the timer to zero and then shows it
permanently in the display. You can end the display and the program as a
whole by pressing 'B'. Try to extend the programming example so that

the timer starts counting when the mBot2 starts moving.

Programming example

OB reset timer

forever

0B show | BB timer(s) at center of screen v by middle v pixel

2. Testing and extending programming examples for the sensors

In the table above, there is a programming example for each sensor. You are going to recreate

these programming examples in mBlock and test them. Think of an extension for two of the

programming examples. The table above already mentions an extension suggestion for every

programming example. Maybe you know a much nicer extension!

While writing a computer program, you can immediately test what you are creating. You do

this by using live mode. You select live mode by moving the Mode switch to the right. Take a

look at the image below.

Mode Switch

Upload

Live

¢ Connect

3. Displaying the data from the sensors

In testing the programming examples, you have seen that each sensor shows something on
the CyberPi's display. For example, the light sensor records the light intensity of the
environment. The timer registers the time, and the gyro sensor keeps track of which way the
mBot2 tilts. Everything that a sensor registers is called data.

You can show the data from a sensor on the display of the mBot2. In the programming

examples you have seen that you can display the data with, for instance, a number or a text.

© education.makeblock.com

31

makeblock

education

You can display the data from the sensors in different ways on the display of the mBot2. You
can use different code blocks for this. These code blocks can be found in mBlock under the
category 'Display’.

In the diagram below you see three examples of how to show data on the CyberPi's display.
Reproduce the programming examples and test in live mode. See what happens on the display

of the mBot2.

Programming example

Line diagram

I E line chart, add data | £ B loudness

BB set brush color I

&8 line chart, add data @
&8 line chart, add data @
&8 line chart, add data @

&8 line chart, add data @

OB set brush color

Line diagram (color)

&8 line chart, add data @
&8 line chart, add data @
&8 line chart, add data @

&8 line chart, add data @

BB table, input atrow 1% ,column 1+

BB table, input atrow 1% ,column 2w

BB table, input atrow 2+ ,column 1w

Table
BB table, input m atrow 2v ,column 2w

BB table, input atrow 3¢ ,column 1w

BB table, input @ atrow 3v ,column 2w

BB table, input atrow 4% ,column 1w

OB table, input @ atrow 4v ,column 2w

4. Live mode and upload mode

You need to transfer the computer program you build in mBlock to the CyberPi.

The CyberPi puts the mBot2 to work according to the commands you wrote in mBlock. While
writing a computer program, you can directly test what you are making. You do that by using
live mode. You select live mode by moving the Mode switch to the right. You must not
disconnect the CyberPi from the computer while testing in live mode!

The CyberPi also has an upload mode. In upload mode, the computer program is transferred to
the CyberPi. The program is stored on the CyberPi until you replace it with another program.
You can simply unplug the CyberPi.

In the diagram below you can see the differences between live mode and upload mode.

© education.makeblock.com 33

makeblock

education

Mode Differences explained

Live mode e Programs run on your computer (=your PC or laptop). They
will not be stored on the CyberPi.

e The CyberPi must remain connected to your computer.

e The mBlock code editor must always be open on your
computer.

e This mode is used for programming in the stage.

Upload mode e Programs run on the CyberPi instead of on your computer
and are also stored on the CyberPi.

e The CyberPi does not need to be connected to your computer.

e The mBlock code editor does not need to be open on your
computer.

e A program that you upload to the CyberPi is saved on the

CyberPi until you replace it with another program.

3. Trying out

(25 min)

Step 3: Trying it out

You have already learned a lot about the sensors of the mBot2 and how to show the data
from the sensors on the display of the CyberPi. You are now going to collect data yourself
using the sensors of the mBot2 and show it on the CyberPi's display. You will do this while
driving the mBot2 around the classroom or school. What data you collect and how you show it
on the CyberPi's display is up to you.

Use the knowledge you gained in 'Step 2' of this lesson. Of course, you can do plenty of
experimenting yourself with the different programming possibilities in mBlock.

When thinking about this assignment, it is helpful to use the following step-by-step plan. Do
you have an idea of what you want to make? If so, first discuss with your teacher whether this

is feasible.

Explanation

Step 1: What do you want to do? e What route do you want the mBot2 to drive?

e What data do you want the mBot2 to collect?

Step 2: What do you need? e What do you need in addition to the mBot2?
Step 3: What code blocks do you e How will you make the mBot2 drive?
need to make the mBot2 drive? e What data will you have the mBot2 collect?

e What code blocks will you use?

e Make a brief description on how your program
works (pseudocode/natural language, flowchart
or UML)

o If you need further explanation, you can discuss
with your fellow students, the teacher, or do a
research on the topic. There is help available for

every coding block in mBlock as well.

Step 4: In what way do you want e How do you want to show the data on the
to show the data from the display?
sensors on the display? e What code blocks will you use?

e Make a brief description on how your program
works (pseudocode/natural language, flowchart
or UML)

e If you need further explanation, you can discuss
with your fellow students, the teacher, or do a
research on the topic. There is help available for

every coding block in mBlock as well.

Step 5: Testing and e Is the first version ready? Test it! During the

implementation testing round, write down areas of improvement.

e Work on the improvement points until the mBot2
does exactly what you had in mind.

e Successful? Film the end result and ask your
teacher if you can post it on social media with the

hashtag #mbot2.

© education.makeblock.com 35

makeblock
education

Step 4: Wrap-up

What data did your mBot2 collect? Did it go well? Did you get to see all the data on the display
of the CyberPi?

In this lesson, you learned about the different sensors on the mBot2 and where you might

encounter them in everyday life. You know how to program these sensors and how to show the

data on the display. You also learned about the difference between the upload and live modes

of mBlock.

It is now time for a brief reflection. Think on your own and discuss with the group:

What do you think worked out well?

What could be better?

Which parts of the lesson did you find easy and which did you find more difficult?
What would you like more explanation about?

Who could help you with that?

Lesson 3:

Listen to mBot2

Subject: STEAM Grade(s): 5t and up
Duration: 45 Minutes Difficulty: Beginner

By the end of the lesson, students will be able to:

e Recognize and use the code blocks for controlling the speaker and microphone
e Build your own computer program in mBlock to make the mBot2 record sound and
play it back

e Run multiple programming tasks side by side in a computer program

Robots can often talk. Take, for example, the vacuum cleaner robot that uses a voice
message to let you know its battery is low. Or a toy robot that sings a song. The mBot2 can
also produce and record sound. It has a microphone and speaker for that. With the

microphone, the mBot2 records sound and the speaker plays back the recorded sound.

Focus

By the end of this lesson, students will know:

e How to make use of the speaker in coding and robotics
e How to record and play back sound

e How to run multiple programming tasks side by side

© education.makeblock.com 37

makeblock

education

What do you need?

e PC or laptop (with USB output) with the mBlock software installed, the web version
(also for ChromeBook), or a tablet with the mBlock app installed

e The mBot2 with a CyberPi

e A USB-C cable or Makeblock Bluetooth dongle

B Lesson plan

This lesson consists of four steps and takes a total of 45 minutes.

Duration Contents

1. Warming up

5 minutes e Speakersin everyday life

e How does the speaker work?

2. Hands-on

e Getting acquainted with the different code blocks of the speaker
10 minutes and microphone. |
e Reproduce, test and extend some programming examples of the

speaker and microphone.

3. Trying out
25 minutes e Writing your own program for the robot.

4. Wrap-up
e Showtime: show what you did with your robot in a fun, short movie
for later discussion.
5 minutes e If your teacher allows, share the end result on social media with
the hashtag #mBot2speaker
e Reflection: What are you most proud of? What would you like to

improve about your robot?

:= Activities

1. Warming up

(5 min)

Step 1: Warming up
This step consists of two parts:
1. Speakers in everyday life

2. How does the speaker work?

1. Speakers in everyday life

Speakers are used all around you in everyday life. You will find large speaker systems in
theaters, concert halls and event halls. These speakers are used to amplify the sound for a
large group of people. Smaller speaker systems are found in appliances, such as televisions,
musical instruments, and smartphones. Can you and the classmates in your group think of

more applications?

2. How does the speaker work?

The purpose of a speaker is to produce sound. Speakers convert electromagnetic waves into
sound waves for this purpose. Next to its main purpose, a speaker can actually convert sound
waves back to electromagnetic waves, too. Microphones are devices that use the same

principle, but are optimized for the purpose of converting sound waves to electrical signals.

On the mBot2 there is a speaker and a microphone. The microphone is on the top left of the
CyberPi. The speaker is on the front of the CyberPi. With the microphone you can record

sounds. These sounds can be played back later with the speaker.

Built-in microphone

CyberPi

Integrated speaker

© education.makeblock.com 39

makeblock

education

By using the microphone and the speaker in combination with the other sensors of the mBot2
you can, for example, have your own recorded text played back at a specific time. For example,
think of a public bus which tells you which stop you are almost at. There are countless other
possibilities for using the microphone and speaker. Together with the classmates from your
group, think of more examples where the mBot2 can make good use of the speaker and

microphone.

2. Hands-on

(10 min)

Step 2: Hands-on
This step consists of two parts:
1. Getting acquainted with the different code blocks for the speaker and microphone.

2. Reproduce, test and extend some programming examples of the speaker.

1. Getting to know the different code blocks for the speaker and microphone
In mBlock 5, there are several code blocks that you can use to program the speaker and the
microphone. You will find these code blocks in the 'Audio' category of the block area in mBlock.

These code blocks are purple.

In the table below you will see some of these code blocks to program the D

speaker and microphone. Audio

Code block:

BB start recording BB stop recording BB play recording

When recording and playing back a sound, you actually always use three code blocks. With
the code block 'Start recording' you let CyberPi start recording a sound. The electrical signal
from the microphone is stored in the memory of the CyberPi, and the recording
automatically stops after 10 seconds. You can also indicate when the recording should stop.
This is done with the code block 'Stop recording'. The recorded sound is temporarily stored in
the memory of the CyberPi. Do you switch off the mBot2? Then the recorded sound is lost.

Playback of the recorded sound is controlled by the 'Play recording' code block.

In the programming example below, when you press button A, CyberPi starts recording. After
3 seconds the recording stops. When you press button B, you hear what was recorded. By
using two event blocks, two programming tasks can run independently from each other

without the need for a main loop.

0B when button A v pressed

OB when button B v pressed

OB start recording OB play recording

wait o seconds

0B stop recording

Code block:

OB play recording until done

You just learned how to playback a recorded sound. With this code block you make sure that
the sound recorded by the microphone is played all the way through. This means that the
execution of further blocks is blocked until this one is finished. After the sound is finished you
can make the mBot2 do something else. For example, make a certain sound so you know the
recording is finished.

In the programming example to the right, the when space v key pressed
CyberPi starts recording when you press
button A. If you press button B, the recording if OB button Aw pressed?
stops. If you move the joystick down, you will

BB start recording
hear what the mBot2 recorded. After the

entire recording ends, you will hear a "prompt if 0B button Av pressed?

sound. The code blocks in this example are

BB stop recording

placed in a so-called loop structure. This
ensures that the input from the buttons and i OB joystick pulledl v ? Jthen

joystick are continuously monitored. . .
BB play recording until done

EB play prompt v

© education.makeblock.com 4]

makeblock

education

2. Reproducing, testing and extending some programming examples from the speaker

In the table above, each code block of the speaker is accompanied by a programming example.
You are going to recreate these programming examples in mBlock and test them. Think of one
extension to a programming example. Test the programming examples and your own

extension in live mode.

3. Trying out

(25 min)

Step 3: Trying it out

You've already learned a lot about the speaker and microphone on the mBot2. You are now
going to work on them by yourself. You are also going to use the ultrasonic sensor. This sensor
can sense an object from a distance. You will learn more about the ultrasonic sensor in lesson
4,

In this assignment you are going to make the mBot2 drive a random lap around the classroom.
Random means that you don't predetermine a route. If the mBot2 comes near an obstacle,
such as a chair, table or backpack, you will hear a sound and the mBot2 will turn around. You
will record the sound yourself with the microphone. Such a sound could be, for example, a loud
beeping sound or the sound of a car slowing down. You can also record a text or have the
mBot2 play a song.

It's quite difficult to come up with a computer program for this all by yourself! Fortunately,
you can get help. On the next page you see two examples of a computer program. You can

expand and adapt these computer programs by yourself. Be creative!

Example 1
The mBot2 makes a sound when it approaches an obstacle and turns around. You recorded

the sound yourself earlier.

8 when button A v pressed OB when button B v pressed

OB start recording forever

wait o seconds

0B stop recording

if E ultrasonic2 1 v distance to an object (cm) | < @ then

OB play recording until done

&% encoder motor all ¥ *) rotates by @ -
else

&0 moves forward v at @ RPM

Example 2
The mBot2 drives around and plays a sound you recorded when the ambient light is low.

When the mBot2 comes near an obstacle, it lets out a warning sound and turns around.

OB when button A v pressed OB when button B v pressed

OB start recording forever

wait o seconds

OB stop recording

if E ultrasonic2 1 v distance to an object (cm) | < @ then

OB play warning v until done

&% encoder motor all ¥+ X) rotates by @ i

else

&% moves forward v at @ RPM

if B ambient light intensity < @ then

OB play recording until done

© education.makeblock.com 43

makeblock

education

Use the knowledge you gained in 'Step 2' of this lesson. Of course, you can do plenty of
experimenting yourself with the different programming possibilities in mBlock.
When thinking about this assignment, it is helpful to use the following step-by-step plan. Do

you have an idea of what you want to make? If so, first discuss with your teacher whether this

is feasible.
Explanation
Step 1: What do you want to do? e When should the mBot2 turn around?

e What sound should the mBot2 make when it gets
near an obstacle?

Step 2: What do you need? e What do you need in addition to the mBot2?
Step 3: What code blocks do you e How are you going to make the mBot2 drive?
need to make the mBot2 drive? e What code blocks will you use?

e Make a brief description on how your program
works (pseudocode/natural language, flowchart
or UML)

e If you need further explanation, you can discuss
with your fellow students, the teacher, or do a
research on the topic. There is help available for
every coding block in mBlock as well.

Step 4: In what way do you want e What sound should the mBot2 make?

to show the data from the e What code blocks will you use?

sensors on the display? e Make a brief description on how your program
works (pseudocode/natural language, flowchart
or UML)

e If you need further explanation, you can discuss
with your fellow students, the teacher, or do a
research on the topic. There is help available for
every coding block in mBlock as well.

Step 5: Testing and o Is the first version ready? Test it! During the

implementation testing round, write down areas of improvement.

e Work on the improvement points until your
mBot2 does exactly what you had in mind.

e Successful? Film the end result and ask your
teacher if you can post it on social media with the

hashtag #mBot2

Step 4: Wrap up

How did this assignment go? Did the mBot2 immediately do what you had in mind?

In this lesson, you learned how speakers work and where you encounter them in everyday life.
You know how to program the CyberPi and the mBot to record via the built-in microphone and
play back through the speakers. You also know how to run multiple programs independently
from each other.

It is now time for a brief reflection. Think on your own and discuss with the group:

© education.makeblock.com 45

What do you think turned out well?

What could be better?

Which parts of the lesson did you find easy and which did you find more difficult?
What would you like more explanation about?

Who could help you with that?

makeblock
education

Lesson 4:

Seeing with sound

Subject: STEAM Grade(s): 5" and up
Duration: 45 Minutes Difficulty: Beginner
W Lesson Objectives

By the end of this lesson, students will know:

e What ultrasound is and how a sensor based on ultrasound works

e Applications of these sensors in everyday live and in robotics

Ww Overview

Autonomous robots need to be aware of their surroundings when driving unattended to
avoid any collisions with obstacles or persons. This also applies to the mBot2. The mBot2 has
a specific sensor for this at the front. It is called the ultrasonic sensor and it enables the
robot to detect objects in its path using sounds that humans can’t hear — giving it the name

(ultrasound).

Focus

By the end of this lesson, students will be able to:

e Use an ultrasonic sensor for range and obstacle detection

e Make the mBot2 react to obstacles and avoid them in driving

What do you need?

B Lesson plan

This lesson consists of four steps and takes a total of 45 minutes.

PC or laptop (with USB output) with the mBlock software installed, the web version

(also for ChromeBook), or a tablet with the mBlock app installed

The mBot2 with a CyberPi
A USB-C cable or Makeblock Bluetooth dongle
Small obstacles (minimum size is 10x10x10 cm)

A workspace of at least Tm? where the mBot2 can drive

Duration

Contents

5 minutes

1. Warming up

Ultrasonic sensors in everyday life

How does an ultrasonic sensor work?

10 minutes

2. Hands-on

Getting to know the different code blocks of the ultrasonic
sensor.
Recreating and testing some programming examples of the

ultrasonic sensor.

25 minutes

3. Trying out

Writing your own program for the robot.

5 minutes

4. Wrap-up

Showtime: show what you did with your robot in a fun, short movie
for later discussion.

If your teacher allows, share the end result on social media with
the hashtag #mBot?2

Reflection: What are you most proud of? What would you like to

improve about your robot?

© education.makeblock.com

47

makeblock

education

:= Activities

1. Warming up
(5 min)

Step 1: Warming up
This step consists of two parts:
1. Ultrasonic sensors in everyday life

2. How does the ultrasonic sensor work?

1. Ultrasonic sensors in everyday life

Ultrasound is sound with a very high frequency. So high, that people cannot hear it. With
special microphones this sound can be recorded and displayed on a computer: it seems like
vibrations in the form of a wave. Since ultrasound has a very high frequency, the waveform
shows valleys and peaks very close together. Ultrasound can be a useful thing. For example,
you can use the vibrations of the ultrasound to clean objects, or you can also use it to detect

objects.

Dolphins and bats use ultrasound this way.
They emit an ultrasonic sound, like a short
scream. When this sound bounces off
something they catch with their ears the
vibrations (echo) that come back. This is how

they know where other animals are, for

example, or if an obstacle is in their way. The Figure 2. Example of bat and dolphin
radar we have today uses the same principle,

but with radio waves instead of sound.

2. How does the vltrasonic sensor work?

The mBot2 has an ultrasonic transmitter and a receiver. These are located on the front of the
mBot2 in the little cylinders that can be considered as "eyes”. This sensor sends out short
bursts of ultrasonic sounds and listens for any echo. Does the mBot2 come close to an
obstacle? Then the ultrasonic sound is reflected back to the mBot2. Based on the time it takes

for the sound to return to the sensor, the mBot2 internally calculates the distance to it.

This data can be used to decide how the robot should react: you tell it to the robot by

programming it. Such an action could be, for example, that the mBot2 should stop driving or

make a turn.

2. Hands-on
(10 min)

Step 2: Hands-on
This step consists of two parts:
1. Getting acquainted with the different code blocks of the ultrasonic sensor

2. Recreating and testing some programming examples of the ultrasonic sensor.

1. Getting acquainted with the different code blocks of the ultrasonic sensor
In mBlock, there are several code blocks for the ultrasonic sensor you can
use in your programs. For this, you need to add the extension 'Ultrasonic

Sensor 2' from the extension library. Then you will find the code blocks in

the 'Ultrasonic Sensor' category of the blocks field in mBlock. These code

blocks are green.

In the table below, you can see some examples of the code blocks to program the ultrasonic

sensor.

© education.makeblock.com 49

makeblock

education

Code block:

9 ultrasonic2 1 ¢ distance to an object (cm)

With this code block you measure the distance between the sensor and an obstacle. The
sensing range is between 3 and 300 cm. You can use the value of the distance to make the
robot perform a certain action. For example, you can prevent the mBot2 from colliding with
obstacles.

In the programming example below, the mBot2 drives forward. When the mBot2 is less than
10 cm from an obstacle, the robot makes a 90 degree turn to the left. Then the mBot2 drives

forward again.

EB when button A v pressed

&% moves forward v at @ RPM

E ultrasonic2 1 v distance to an object (cm) | < m then

w0 turns left » @ ° until done

&% moves forward v at @ RPM

Code block:

E ultrasonic2 1 * increases ambient light all ¥ brightness by @ %

The Ultrasonic sensor on mBot2 has eight blue LED lights. You can use these lights to have
the mBot2 show a certain “emotion”, for example, or as a general visual non-verbal
communication. Make the LED lights shine very brightly when the mBot2 is happy and less
brightly when it is gloomy. There is a specific code block to show pre-defined “emotions”,

too. In the image below you can see where exactly the LED lights are located.

Blue LED x 8

In mBlock there are several code blocks that allow you to program the brightness of the LED
lights: you can either set the brightness of the LEDs by decreasing or increasing the
brightness by a certain percentage. Or you can set the brightness directly to a specific
percentage. The range is 0% to 100%. Both can be done either for a single LED or for all at
the same time. In the programming example below, the brightness of the LED lamp 1is

increased by 50%.

E ultrasonic2 1 v increases ambient light all v brightness by @ %

2. Recreating and testing some programming examples of the ultrasonic sensor
In the table above, each code block of the ultrasonic sensor has a programming example. You
are going to recreate these programming examples in mBlock and test them. For one

programming example, come up with your own ideas on how to extend the application.

© education.makeblock.com 51

makeblock
education

Step 3: Trying it out

3.

Trying out
(25 min)

You have already learned a lot about the ultrasonic sensor on the mBot2. You are now going to

create your own computer program in mBlock using the ultrasonic sensor.

In this assignment you are going to make the mBot2 drive in infinite 'rounds'. You do this by

placing an object at each vertex. You program the mBot2 in such a way that it makes a turn at

each object and eventually returns to the starting point. Take a look at the image below.

©

©

Use the knowledge you gained in 'Step 2' of this lesson. Of course, you can also experiment

with the different programming possibilities in mBlock.

In working out this assignment, it is helpful to use the following step-by-step plan. Do you have

an idea of what you want to make? If so, first discuss with your teacher whether this is

feasible.

Explanation

Step 1: What do you want to do?

In what way should the mBot2 move?

Step 2: What do you need?

What do you need in addition to the mBot2?

Step 3: What code blocks do you e How can you make the mBot2 change direction

need to make the mBot2 move? at each corner?

e What code blocks do you need to do this?

e Make a brief description on how your program
works (pseudocode/natural language, flowchart
or UML)

e If you need further explanation, you can discuss
with your fellow students, the teacher, or do a
research on the topic. There is help available for

every coding block in mBlock as well

Step 4: Testing and e Is the first version ready? Test it! During the

implementation testing round, write down points of improvement

e Work on the improvement points until your
mBot2 runs error-free over your course

e Successful? Film the end result and ask your
teacher if you can post it on social media with the

hashtag #mBot2

Step 4: Wrap-up

Did you manage to get the mBot2 to drive one round?

In this lesson, you learned about ultrasonic sensors and where you might encounter them in
everyday life. You know how to program the ultrasonic sensor of the mBot2, for example, to
prevent the mBot2 from driving into obstacles. You also know how to use the LED lights in the
Ultrasonic sensor to make the mBot2 show a certain emotion.

It is now time for a brief reflection. Think on your own and discuss with the group:

© education.makeblock.com 53

What do you think turned out well?

What could be better?

Which parts of the lesson did you find easy and which did you find more difficult?
What would you like more explanation about?

Who could help you with that?

makeblock
education

Lesson 5:

Sightseeing

Subject: STEAM Grade(s): 5" and up

Duration: 45 minutes Difficulty: Beginner

W Lesson objectives

By the end of this lesson, students will know:
e How color sensors work

e Their applications in everyday life and in robotics

W Overview

Imagine being in a foreign city, taking a tour in a coach along the most beautiful sight.
Perhaps you've made such a trip yourself, and if not, you probably know the pictures from TV

and the Internet. In this lesson the mBot2 is transformed into such a touring car.

Because it would be very boring for a driver to drive the same route every day (and explain
every sight over and over again), we dare going to program this coach. This way people can

enjoy a nice ride without the driver getting bored on repetitive tasks.

Focus

At the end of this lesson, students will be able to:
e Make the mBot2 follow a line

e Have the mBot2 perform actions based on colors

What do you need?

e PC or laptop (with USB output) with the mBlock software installed, the web version

(also for Chromebook), or a tablet with the mBlock app installed

e The mBot2 with a CyberPi
e A USB-C cable or Makeblock Bluetooth dongle

B Lesson plan

This lesson consists of four steps and takes a total of 45 minutes to complete.

Duration Contents
1. Warming up
e Color sensors in everyday life
5 minutes e How do color sensors work? What is specific about the mBot2's

color sensor?

10 minutes

2. Hands-on

Becoming familiar with the different code blocks of the Quad RGB
sensor

Recreating and testing programming examples of the Quad RGB
sensor

How can the mBot2 follow a line?

25 minutes

3. Trying out

Writing your own program for the robot

5 minutes

4. Wrap-up

Showtime: show what you did with your robot in a fun, short movie
for later discussion

If your teacher allows, share the end result on social media with
the hashtag #mBot?2

Reflection: What are you most proud of? What would you like to

improve about your robot?

© education.makeblock.com

55

makeblock

education

:= Activities

1. Warming up
(5 min)

Step 1: Warming up
This step consists of two parts:
1. Color sensors in everyday life

2. How do color sensors work? What is specific about the mBot2's color sensor?

1. Color sensors in everyday life

Color sensors can detect light intensity and colors. You will encounter this type of sensor in
many different places in everyday life.

For example, a warehouse robot can find the correct route through a warehouse based on
different colors on the floor. This kind of sensor is also used if precise color-matching is required,
e.g., in vehicle coloring. A measuring device with a color sensor, the color meter, can check if the
right color is used in spray-painting a vehicle. Can you and the classmates from your group

think of any other examples?

2. How do color sensors work? What is specific about the mBot2's color sensor?

A color sensor consists of three different (internal) sensors that measure the light reflected by
an object based on the intensity of the Red, Green and Blue color values. Color sensors are
therefore called "RGB-sensors" as well. Any color is decoded into three values by the sensor - so
a specific "mix" of these values represents a color.

The mBot2 has four of these RGB-sensors integrated into a single sensor. Take a look at the

image below.

mBuild port mBuild port

Light sensor 4x

This is the Quad RGB sensor that is on the mBot2. The RGB-sensors are named L1, L2, R1, and
R2 (L for left side, R for right side). They automatically detect the RGB values of the reflected
color and compare the mix of values internally with different pre-sets for colors. This will make
coding much easier, because the sensor can then report the color and you don't have to check
the RGB-codes yourself. The sensor can detect 6 different colors plus black and white. Instead
of color it can report on shades of grey or lines and junctions.

The Quad-RGB-sensors allows the mBot2 to follow a line on the floor and react to different
color markers. The Quad RGB sensor is placed on the front of the mBot2. At the bottom face
you will see the four sensors. At the topyou can find the names of each one, so you can identify

and program the sensors in a specific way. Take a look at the images below.

Quad RGB sensor, front view Top view Bottom view

The little button on the top side of the sensor is used for calibration. If you double-click it, the
LEDs will start flashing and you can “swipe" the mBot2 with the sensor across the line to be
followed. This will calibrate the sensor to differentiate the line from the background. If you are
using a black line on a white surface, this is normally not needed.

The map provided with the mBot2 has colors marked inside the track itself to react to the color
codes. This might cause the sensor to misunderstand a bright color (like yellow) for the
background instead of the track. So as a first exercise, please calibrate the sensor to the yellow
color code, it will then automatically recognize reliably this and all "darker” colors as the line.
When you program the mBot2, you will use one or more of these four sensors to check for
certain colors on the floor along the way. You can have the mBot2 perform a command when a

color is spotted. For example, 'stop' when red and “go left"” when green.

© education.makeblock.com 57

makeblock
education

Step 2: Hands-on
This step consists of three parts:
1. Getting acquainted with the different code blocks of the Quad RGB sensor
2. Reproducing and testing some programming examples of the Quad RGB sensor

3. How can the mBot2 follow a line?

1. Getting acquainted with the different code blocks of the Quad RGB sensor
In mBlock, there are several code blocks that you can use to program
the Quad RGB sensor. You can find these code blocks in the 'Quad
RGB' category of the block field in mBlock. These code blocks are

green.

In the table below, you can see some of the code blocks you can use in your program with the
Quad RGB sensor. The first four code blocks are for (simple) line-identification. They can be
used for simple and advanced line following, but also for detecting crossings and sharp (20°)
turns. The calibration of the sensor to different color tracks is briefly mentioned in the section
above. The blue LEDs on the top side of the sensor indicate the line/background detection: if
they are off, they sense dark color (line), if they are shining blue, they indicate bright
(background) color. The status of the LED therefore indicates the reflectivity of the floor or

map.

Code blocks:

E quadrgbsensor 1v L1,R1's linev statusis (3)11 v ?

E quadrgbsensor 1% L1,R1's linev status (0~3)

These code blocks take only the inner two sensors L1 and R1into consideration for line
detection. These blocks are intended for simple line-following.
Use the first block in conditional statements. Use the second block if you want to report the

value to the screen or save it in a variable.

If the sensor is above a black line, both inner LEDs should be off. Since each sensor (L1, R1)
can either detect the line or the background with this block, there are 4 possible
combinations: they will be represented by numbers from O-3 (for reference, the block shows

the binary pattern as well):

Status
LT | RT | Meaning
(Decimal)
Sensor on white background, both LEDs are on 0
R1 detects a black line 1
L1 detects a black line 2
Both inner sensors detect the black line 3

Remember, the LEDs show the background state (on or logical “true” = background
detected), while this code block detects the line color (logical “true” = line detected).

If you wanted to use more than one Quad-RGB-sensor, you can tell the program which sensor
to use with the first number in all the following code blocks. Take a look at the image below.
Number 1 indicates the first connected sensor, number 2 the second connected sensor and so
on.

The following example will use the line detection function of this block and stop the robot as

soon as it arrives at a black line. This example will be changed later to line-following.

&% moves forward v at @ RPM

wait until E quadrgbsensor 1+ L1,R1's linevw statusis (3)11 v ?

&% stop encoder motor all »

Since reacting while driving can be time-critical, it is important to use the Upload mode. You

can try by yourself and see the difference if you switch modes.

© education.makeblock.com 59

makeblock

education

Code blocks:

E quadrgbsensor 1w linev statusis (15)1111 v ?

E quadrgb sensor 1+ line v status (0~15)

Use the first block in conditional statements. Use the second block if you want to report the
value to the screen or save it in a variable.

These blocks follow the exact same logic as the previous ones, except they have a larger
detection are and can identify crossings while still doing line-following. Remember, the blocks
check for the line status, so if one of the four sensors identifies a (dark) line, the
corresponding binary digit will be set to "1" (logic true), but the LEDs will go off (no reflection
on this sensor from background).

With now 4 individual sensors, the range increases to 16 different statuses. The following

table presents the most relevant statuses:

Binary Status
Meaning
pattern (Decimal)
0000 | all 4 sensors on white background (no track) 0
0010 | only RTon black line 2
0100 | only L1 on black line 4
0110 inner sensors R1 and L1 on black line 6

sharp turn right (L1 and R1 on black line, junction
o1m 7
to the right; L-shape junction to the right)

10 sharp turn left (L1 and R1 on black line, junction to
1 14
the left; L-shape junction to the left)

T T-shape junction (L1 and R1 on black line, junction
111 15
to both right and left)

An X-shape junction can only be detected by driving over the T-Junction and checking if the
middle line continues.

The following example program will make the robot drive as long as it is on a black line with
the inner two sensors. It will stop if it goes off track, a junction is detected, or the line

suddenly ends:

EB when button B v pressed

if B quadrgbsensor 1v linev statusis (6)0110+ ? _Jthen

&% moves forward v at @ RPM
else

&% stop encoder motor all »

Code block:

E quadrgb sensor 1v probe (1)R2v detected linev ?

With this code block you select one of the Quad RGB sensors (L2, L1, R1, R2) and determine
whether it should recognize a line, background, white, black or any other of the 5 colors (red,
green, blue, yellow, cyan, purple). For line-detection and following, the previous blocks are
recommended, because they check more than one sensor at the time (faster, more accurate
since the robot does not move between readings). But you can use this block to detect for
example a red color marker on the left side of the robot — while the robot is following a line.

In the following programming example, if you press the B-button, the mBot2 drives straight
(assuming it follows a line) and does a 20° turn when a red marker is detected on the left side

of the (imaginary) track.

I H when button A v pressed
&% moves forward v at @ RPM

wait until Equad rgb sensor 1+ probe (4)L2v detected redv ?

&0 turns left v @ ° until done

&2 stop encoder motor all »

© education.makeblock.com 61

makeblock

education

Code block:

E quad rgb sensor 1 v deviation (-100~100)

This code block measures how far the robot is off from a black track. You can use it for
advanced and smooth line following. The previous line following code block uses a triple
distinction: on track, left off or right off (plus added junction detection in some cases). But in
everyday life riding a bicycle, you would adjust the steering to the curve more precisely. This
block allows a proportional line following: the more the robot is off the track, the more it will
steer into the opposite direction. If the offset from the track is O, the steering is O as well
(straight).

In step3, we will discuss how we can use this block to follow a line “smoothly” by programming
a proportional line follower. The example program below will display the deviation on the

screen, so you can try moving the robot on the track by hand first:

BB show E quad rgb sensor 1 v deviation (-100~100) at center of screen v by middle v pixel

2. Reproducing and testing some programming examples of the Quad RGB sensor
In the diagram above, each code block of the Quad RGB sensor has a programming example.
You are going to recreate these programming examples in mBlock and test them. For one

programming example, come up with your own modification to the code.

3. How can the mBot2 follow a line?

The basis of the assignment in 'Step 3' of this lesson is that the mBot2 is going to follow the
track on a map, being a touring coach. For this purpose, you will need to use the code examples
explained and tested so far and modify them accordingly.

First use this coding block:

) quadrgbsensor 1v L1,R1's linev statusis (3)11v ?

If the robot is on the track (both L1 and R1 detect a line, code value3), the robot should drive
straight. If only one of the two inner sensors identifies a line, then it should turn left or right
accordingly.

Use these driving blocks (only turning right is shown):

&% turnsright v at @ RPM W &% moves forward v at @ RPM

They just start the motors as needed, and the next code block will be executed immediately.
Since you don't know how far the robot is off or when a next curve will occur, the driving
commands cannot contain any driving time or distance (same for turning). The next iteration of
a program loop will check the new sensor data and select the driving accordingly.

If you are using the provided map, make sure to calibrate the sensor as described to the

brightest color (yellow section on the track).

3. Trying out

(25 min)

Step 3: Trying it out

You have already learned a lot about the Quad RGB sensor on the mBot2. You are now going to
create your own computer program in mBlock using the Quad RGB sensor.

In this assignment you will turn the mBot2 into a touring car. The tour coach takes a tour of
landmarks in a city. In the box of the mBot2 there is a map with a track. The coach follows the
black line on the map. In the previous part you should have already programmed a simple line
following robot, now it is time to add more enhancements.

To make the program easier to understand, you can "build” your own

coding blocks. The entire line-following part of the program can be added ‘

up to one simple command, e.g., “simple_line". The red/pink "My Blocks" in My Blocks
the code menu allows to define a custom block and structure your code in

a nice way. The example program below makes use of custom blocks.

In addition to following the track, the coach performs an action at some of the sights. The
sights are indicated by a colored area (red, yellow, green, and blue).

You can think up the actions that the coach should perform. Are you going to have the coach
drive around Paris? Then it might be fun to play the French national anthem. Or the bells of Big

Ben if the coach is driving through London.

© education.makeblock.com 63

makeblock

education

Of course, you can also keep it a little simpler. In the example below, you have the coach turn

around at the red marker and do different activities at other colored markers.

if B quadrgbsensor 1v probe (1)R2v detected red v ? Jthen
& turns left » ° until done

o moves forward v o cm v until done

Use the knowledge you gained in 'Step 2' of this lesson. Of course, you can do plenty of
experimenting yourself with the different programming possibilities in mBlock. Do you get
stuck? Then you can use the programming examples below. You can copy it and adapt it to your

own wishes and preferences.

BB when joystick middle pressed v
repeatuntil. 0B button B v pressed?
simple _line follow
if Equad rgb sensor 1 v probe (2)R1 v detected blue v ? “then

&% moves forward v at m RPM for o secs

i Equad rgbsensor 1+ probe (2)R1 v detected red v ? Zthen
&% turns left » ° until done

&% moves forward v o cm v until done

if Equad rgb sensor 1 v probe (2)R1 v detected greenv ? Jthen

& turns left » @ °® until done

wait o seconds

&% turns right » ° until done

wait o seconds

&% turns left » @ ° until done

&% moves forward v o cm v until done

&% stop encoder motor all v

This program starts if you press B and it stops with pressing A. It performs a simple line
following using custom "My Blocks"-code and then checks if the R1 sensor detects either blue
(drive very slowly) red (turn around), or green (look to each side). To make sure the color does
not get recognized again after the activities were done, the robot drives 4cm forward each
time.

The "simple_line" block is defined as follows:

define simple line follow

i E quadrgb sensor 1+ L1,R1's line v statusis

moves forward v at @ RPM

) quadrgb sensor 1+ L1,R1's line v statusis

turns right v at @ RPM

E quadrgb sensor 1+ L1, R1's status is

turns left v at @ RPM

B quad rgb sensor 1+ L1, R1's status is

moves backward v at m RPM

Advanced version:

In the previous step, the deviation from the line was introduced. This block reports how far the
robot is off track (-100 to +100; O for perfect in center) and it can be used to calculate the
steering of the robot. This is a proportional line following — the more the robot is off track, the
more it needs to steer against this. If the robot is right off track, the deviation is positive
(robots needs to drive to the left); for negative values, the robot is left to the track (needs
driving right).

For implementing this, you need a basic speed - that is the speed for moving forward on a
straight track. For steering left or right, one of the wheels needs to turn faster than the other -

the greater the difference, the greater the steering.

© education.makeblock.com 65

makeblock

education

To calculate the steering, we need to add the deviation to one motor's basic speed and subtract
it from the other. To allow for a finder adjustment, a factor will be used to adjust how strong
the deviation affects the steering, since the range for deviation itself is too big to be used
directly for controlling the motors.

But to which motor must the calculated value be added or subtracted? A positive deviation
means the robot is off track on the right side and must turn left. This means that the right

wheel must run faster — we add the scaled deviation to the right wheel and subtract it from the

left therefore.

speed + steering * sensor

speed - steering * sensor

When setting up the "My Blocks", you can add inputs and rename them to a meaningful name:

Make a block X

IR speed M steering M sensor

Add an input Add an input Add an input Add a label
number text boolean

ORun without screen refresh

The only thing left to take care of, is that the movement block (shown below) requires negative
values for the right motor and positive for the left one to drive forward (this is because they are

mounted facing each other).

&% encoder motor EM1) rotates at @ RPM, encoder motor EM2 X) rotates at @ RPM

To finalize the calculation, the values for the right motor need to be multiplied by -1. This is the

definition of the proportional line following block:

define line follow speed | steering

set leftv to o * speed + steering * sensor

set leftv to o * speed - steering * sensor

&% encoder motor EM1) rotates at ' left RPM, encoder motor EM2 ¥) rotates at | right RPM

In the main loop of a program, you simply use this block with one command:

line follow @ m E quad rgb sensor 1 v deviation (-100~100)

This calls the sub-program with a basic speed of 50 and a steering factor of 0.6 and sends the
current deviation from the sensor reading as well. You can experiment with the values a bit - if
the robot “oscillates” (rapidly switching from left to right turning etc.) the steering factor is too
high; if it goes off track even on weak curves, it is too low.

When working on this assignment, it is helpful to use the following step-by-step plan. Do you

have an idea of what you want to make? If so, first discuss with your teacher whether this is

feasible.

Explanation

Step 1: What do you want to do?

In what way should the mBot2 move?

Step 2: What do you need?

What do you need in addition to the mBot2?

Step 3: What code blocks do you

need to make the mBot2 move?

How can you make the mBot2 change direction
at each corner?

What code blocks do you need to do this?

Make a brief description on how your program
works (pseudocode/natural language, flowchart

or UML)

© education.makeblock.com

67

makeblock

education

e |If you need further explanation, you can discuss
with your fellow students, the teacher, or do a
research on the topic. There is help available for

every coding block in mBlock as well

Step 4: Testing and e s the first version ready? Test it! During the

implementation testing round, write down points of improvement

e Work on the improvement points until your
mBot2 runs error-free over your track

e Successful? Film the end result and ask your
teacher if you can post it on social media with the

hashtag #mBot2

Step 4: Wrap-up

Did you manage to program the mBot2 as a touring car around the track?

In this lesson, you learned about the Quad RGB sensor and where you might encounter it in
everyday life. You know how to program the mBot2's Quad RGB sensor to make the robot
follow a line. You also learned how to program the mBot2 to drive a route based on different
colors.
It is now time for a brief reflection. Think on your own and discuss with the group:

e What do you think turned out well?

e What could be better?

e Which parts of the lesson did you find easy and which did you find more difficult?

e What would you like more explanation about?

e \Who could help you with that?

Lesson 6:

Careful drive

Subject: STEAM Grade(s): 5" and up

Duration: 45 minutes Difficulty: Beginner

By the end of this lesson, students will be able to:

e Recognize and use the code blocks for the gyroscope accelerometer in CyberPi
e Build their own computer program in mBlock to measure the changes on the

inclination of mBot2 and adjust its movements accordingly

A gyroscope measures tipping movements, more precisely the speed of turning/tipping
movements. An accelerometer measures the change in velocity. Both sensors provide

different information about the position in space.

Combining both types of data, the position and the
movement of vehicles, robots or even space probes
can be calculated. On bumpy roads, for example,

robots might drive slower to prevent tipping over.

Focus

By the end of this lesson, students will know:

e How gyroscopes and accelerometers work and how their measurements can be

combined

e How to make a robot react to sudden changes and detect crashed or bumpy roads

© education.makeblock.com 69

makeblock

education

What do you need?

e PC orlaptop (with USB output) with the mBlock software installed, the web version
(also for Chromebook), or a tablet with the mBlock app installed

e The mBot2 with a CyberPi

e A USB-C cable or Makeblock Bluetooth dongle

B Lesson plan

This lesson consists of four steps and takes a total of 45 minutes.

Duration Contents

1. Warming up

. e Gyroscopes and accelerometers in everyday life
5 minutes

e Which tilt movements can the mBot2 detect?

2. Hands-on

e Getting acquainted with the different programming blocks of the
. gyroscope and accelerometer
10 minutes _))
e Recreating and testing some programming examples of these

Sensors.

3. Trying out
25 minutes e Writing your own program for the robot

4. Wrap-up
e What did you learn in this lesson?
e Showtime: show what you did with your robot in a fun, short movie
_ for later discussion
> minutes e If your teacher allows, share the end result on social media with
the hashtag #mBot2

e Reflection: What are you most proud of? What would you like to

improve about your robot?

:= Activities

1. Warming up

(5 min)

Step 1: Warming up
This step consists of two parts:
1. Gyroscopes and accelerometers in everyday life

2. Which tilt movements can the mBot2 detect?

1. Gyroscopes and accelerometers in everyday life

How do devices like smartphones identify their position (hold upright, display facing
up/down)? How to determine if a crash is severe enough to ignite airbags? Estimating the
current position without an external precise reference has been a challenge at sea with cloudy
skies for centuries — and it is still a very important task for household items, robots and even
space probes. They all use at least two different sensors, gyroscopes, and accelerometers. A
gyroscope works with a crystal that is under electric tension. This converts the direction of the
force of the tipping motion into an electrical signal. Gyroscopes measure the rotational speed
in degrees per second and with the help of math, they can estimate the rotated angle as well -
but the latter is not that accurate: gyroscopes “drift” over time. Accelerometers report the
change of position (like in- or decrease of speed) — and regarding the earth's gravity, they
report the gravitational acceleration (as compared to free fall). Both types of sensors

can measure on each spatial axis, reporting either rotational speed or acceleration on X-, Y-
and Z-axis.

Combining data from both gyroscope and accelerometer, the direction and strength of
movements can be calculated (in reality this is not super precise, so it is more a very good
estimation). In Robotics these sensors are used to stabilize vehicles in uneven ground (or in
flight) and help them maintain their programmed path. For the mBot2, these sensors are
integrated into a small chip on the CyberPi.

Therefore, we will address the combined sensor as “motion sensor”.

© education.makeblock.com 71

makeblock

education

2. Which tilt movements can the mBot2 detect?

Before you learn to program in mBlock5 with the motion sensor, it is useful to know which tilt
motions the mBot2 can measure. You can show the measurements of the tilting movements
on the CyberPi display. In lesson 2 you have already learned about how to do this.

The mBot2 can detect the following tilt movements:

Tilt backward /\

Tilt right (i Tilt left

Tilt forward

Rotate
counter clockwise

Acceleration
Rotate clockwise (e.g. drop) Shaking

2. Hands-on

(10 min)

Step 2: Hands-on
This step consists of two parts:
1. Getting acquainted with the different programming blocks of the motion sensor

2. Recreating and testing some programming examples of the motion sensor

1. Getting acquainted with the different programming blocks of the motion sensor

In mBlock there are several code blocks for the motion sensor you can /ﬁ
use in your own programs. These code blocks can be found in the B
'Motion Sensing' category of the block field in mBlock. These code Motion
blocks are orange. .

g Sensing

The table below gives a detailed explanation on the code blocks together with some sample

program code to test it.

Code block:

BB shaking strength

This code block reports how hard the mBot2 is being shaken. At a value of 'O’ the mBot2 is
not shaken at all. With a value of 100" a very hard shaking movement is detected. In the
programming example below, the strength of the mBot2's shaking is shown on the display.

If the mBot2 stops shaking, the display is blank.

BB when CyberPi starts up

BB show | @B shaking strength at center of screen ¥ by middle v pixel

Code block:

This code block is used to record the waving speed. The waving speed ranges from O to 100.
These units do not represent speed in m/s or in degrees/s, they are just a simple reference.

In the programming example below, the waving speed of the mBot2 is shown in the display.

If the mBot2 stops waving, the display is blank.

BB when CyberPi starts up

BB show | @B waving speed at center of screen ¥ by middle v pixel

© education.makeblock.com 73

makeblock

education

Code block:

TR tilted forward v angle (°)

Each tilt makes a movement at a certain angle in a certain direction. When specifying an
angle, the X, Y and Z axes are used to refer to the direction. Instead of these mathematical
terms, they are addressed as roll, pitch and yaw as well. These terms originate from
navigation of planes. Roll is the axis front-back, pitch refers to up/down turns (axis from left
to right) and yaw is the top-down axis responsible for tuning left/right.

Take a look at the image below.

Yaw angle
Z
A Positive
Negative _/ X.
_/ Pitch angle
Positive
Angles are given in degrees:
e Roll angle: -180° to +180°
Positive

e Yaw angle: -180° to +180°

Negative

e Pitch angle: -90° to +90° Roll angle

In the program below, the pitch angle will be displayed in the top row and if a tilting forward
or backward movement is detected, the words “forward” or “backward” appear on the last

line. Can you identify the threshold for detection?

when clicked
forever

0B showlabel 1 v [OB tilted backward(pitch) ¥ angle(*) at centerofscreen ¥ by middle v pixel

if OB tilted forward v ? _then

0B show label 1 v (GOLNNYY at center of screen ¥ by middle v pixel
else
i OB tilted backward * ? _then

O H show label 1 v @ISR at center of screen v by middle v pixel

B show label 1w . at center of screen ¥ by middle v pixel

Try to experiment with the different settings from the dropdown-menu. Now you have
analyzed the tilting movement on the pitch/x-Axis. If you switch to tilt_left/right, remember

to switch the Boolean reported blocks as well:

when clicked
forever
0B showlabel 1+ (@B tilted right(roll) ¥ angle(®) at center ofscreen ¥ by middle v pixel

i BB tiltedrightv ? _then

0B showlabel 1 v @@GUellP at center of screen ¥ by middle v pixel

I8 show label 1 v . at center of screen ¥ by middle v pixel

© education.makeblock.com 75

makeblock

education

Code block:

I B motion sensor x v acceleration(m/s2)

So far, we have looked at tilting movements, but the motion sensors incorporate another
sensor, the accelerometer. It measures changes in the velocity of the mBot2 over time. This
can be slow increases in driving speed as well as a sudden stop or even a side-impact from
another vehicle. Since these measures are based on the x, y and z axes of the robot, you can
detect a crash if you look for a rapid change in acceleration. The accelerometer indicates the
acceleration in m/s2.

In the programming example below, the acceleration of the mBot2 on the z-axis is shown in
the display. Move the mBot2 by hand and check the display. What readings does it show if
the robot “crashes” into your hand or a book? Can you change the program and simulate a

side-impact?

when clicked

forever

BB print | @B motion sensor z ¥ acceleration(m/s?) and move to a newline

Code block:

BB angle speed around x v axis(®/s)

This code block shows the speed at which the mBot2 rotates around a certain axis. This is
also called the angular velocity. The angular velocity is shown in degrees per second (°/s).
In the programming example below, the angular velocity of the mBot2 around the x-axis is

shown on the display.

when space v key pressed

BB show | @B angle speed around x v axis(°/s) at centerof screen v by middle v pixel

Code block:

BB rotated angle around x v axis (°)

This code block indicates the angle at which the mBot2 rotates around a given axis. The
angle is displayed in degrees (°) and is measured relatively. The initial position is set when
the mBot2 is turned on. This data is calculated from the rotational speed the gyroscope
reports. It can drift over time and it is not that stable - try tilting the mBot2 sideways with
the program below and check the values. Do they go back to their initial state?

In the programming example below, the angle at which the mBot2 rotates around the y-axis

is shown on the display.

I8 print | B rotated angle around y ¥ axis (°) and move to a newline

There are two important aspects: this block will keep track of rotational movements that
are greater than one revolution. Use this block to count how many times the robot has

turned. Looking at the z-Axis, a clockwise rotation will increase the values reported by this

block:
OB rotate clockwise v angle (°)

While the rotated angle around the z-axis decreases:

OB rotated angle around z v axis (°)

After 3 Rotations of 360° the last block will report "-1080°", but the previous block will just
show "0" (back to initial position, ignoring multiple rotations). If then rotated
counterclockwise 4 times (one more time previously), the “rotate_clockwise" angle is at 0O°

again, while "rotated_angle_around_z axis” now shows 360° (all figures without gyroscope

drift).

© education.makeblock.com 77

makeblock

education

If you just need to take small rotational movements into consideration, for the x- and y-axis,

the "tilted (__) angle” blocks discussed beforehand provide a more robust measurement.

There is one exception: rotations around the yaw/Z-Axis can only be measured with the help
of the gyroscope. If you want to measure the degrees, the mBot2 is turning left/right, you

need to work with this data.

Code block:
BB reset rotated angle around all v axis

If you want to determine the angle that the mBot2 is making, it is easier to measure the
change from the value O. This code block resets the measured value of an angle to the
starting value O, defining a new starting position for future turns.

In the programming example below, the angle at which the mBot2 turns around the z-axis is
shown on the display. If the angle is greater than 720°, then the measured value of the angle

is set to O and it is measured again.

when space v key pressed

0B show | OB rotated angle around x ¥ axis(®) at centerofscreenv by middle v pixel

if 0B rotated angle around xv axis () > then

BB reset rotated angle around all v axis

Remember, there are two blocks to measure the rotation: one only cares for full rotations,
the other keeps counting. This reset-block sets all (or selected) "rotated_around_axis” blocks
to zero. It does not have an effect on the "rotate clockwise"”/ "rotate counterclockwise"

block. This one has its own reset block:

BB reset yaw angle

Any setting-to-zero only applies to rotations reported by the gyro sensor alone. The tilted
___angle reports always from a perfectly leveled plane perpendicular to the earth center

and cannot be set to zero at will.

2. Recreating and testing some programming examples of the motion sensor

In the table above each code block of the motion sensor has a programming example. You are
going to recreate these programming examples in mBlock and test them.

The motion sensor on the CyberPi registers the tilting movements of the mBot2. When testing
the above programming examples; therefore, you actually only need the CyberPi. If it is more
convenient, remove the CyberPi from the mBot2 and make the tilting movements with the
CyberPi yourself during testing. You can test the programming examples in live mode. Since
the battery is in the mBot2 shield, you will need to connect the CyberPi to the computer via the

USB-C cable to run the programs.

3. Trying out

(25 min)

Step 3: Trying out

You have already learned a lot about the motion sensor on the mBot2. You are now going to
create your own computer program in mBlock using this sensor.

In this assignment you are going to create a bumpy track for the mBot2. You can make this
track from, for example, (small) stones or plasticine on cardboard. The idea is for the mBot2 to
drive over the course. If the mBot2 is shaken (hard), it must drive slower. You can also put an
object on the mBot2 that must not fall while driving.

Tricky task, isn't it? Fortunately, you don't have to invent everything yourself! Below you can
see a programming example that you can extend. In this programming example, the mBot2

will slow down if it makes too large tipping movements.

when space v key pressed
OB reset rotated angle around all v axis

repeatuntil . OB button B v pressed?

if OB tilted right(roll) * angle (°) >m or OB tilted right(roll) » angle (°) < (Gl then

20 moves forward v at @ RPM
else
&2 moves forward v+ at @ RPM

&2 stop encoder motor all »

© education.makeblock.com 79

makeblock

education

Use the knowledge you gained in 'Step 2' of this lesson. Of course, you can do plenty of

experimenting yourself with the different programming possibilities in mBlock.

When thinking about this assignment, it is helpful to use the following step-by-step plan.

Explanation

Step 1: What do you want to do?

What route do you want the mBot2 to drive?
When should the mBot2 slow down?
Do you want the mBot2's sensors to also show data

on the display?

Step 2: What do you need?

What do you need in addition to the mBot2?

Step 3: What code blocks do you

need to make the mBot2 drive?

How are you going to make the mBot2 drive?

What code blocks will you use?

Make a brief description on how your program works
(pseudocode/natural language, flowchart or UML)

If you need further explanation, you can discuss with
your fellow students, the teacher, or do a research
on the topic. There is help available for every code

block in mBlock as well

Step 4: How do you want to show
the data from the sensors on the

display?

How do you want to show the data on the display?
What code blocks will you use?

Make a brief description on how your program works
(pseudocode/natural language, flowchart or UML)

If you need further explanation, you can discuss with
your fellow students, the teacher, or do a research
on the topic. There is help available for every coding

block in mBlock as well

Step 5: Testing and

implementation

Is the first version ready? Test it! During the testing
round, write down areas of improvement

Work on the improvement points until your mBot2
does exactly what you had in mind

Successful? Film the end result and consult with your
teacher if you can post it on social media with the

hashtag #mBot2

Step 4: Wrap up

How did this task go? Did the object stay neatly on the mBot2 while driving?

In this lesson, you learned about sensors for measuring movement around axes and
acceleration, the gyroscope and the accelerometer. They are integrated into a single little
component placed on the CyberPi. These combined sensors are used to determine the position
of a robot in 3D-space. They are called inertial measurement units, IMU. You have learned
where to encounter them in everyday life. You know what tilt-movements and movement-
changes the mBot2 can measure and how you can use different code blocks to take advantage
of these measurements in your programs with mBot?2.

It is now time for a brief reflection. Think on your own and discuss with the group:

© education.makeblock.com 81

What do you think turned out well?

What could be even better?

Which parts of the lesson did you find easy and which did you find more difficult?
What would you like more explanation about?

Who could help you with that?

makeblock
education

Lesson 7:

A network game

Subject: STEAM Grade(s): 5" and up

Duration: 45 minutes Difficulty: Beginner

By the end of this lesson, students will be able to:

e Have multiple mBot2 communicate with each other wirelessly without the need for a
WIFI access point
e Write their own computer program in mBlock to control multiple mBot2

e Apply a random selection in a computer program

LAN is the abbreviation for Local Area Network. The mBot2, with its built-in WIFI module,
automatically establishes a network connection as soon as there are multiple mBot2 or
CyberPi in the same room within a 30-meter radius. Over this network connection, the mBot2

and CyberPi can communicate with each other and execute commands.

Focus

By the end of this lesson, students will know:

e What a LAN connection is
e How to set up this connection and where to apply it

e How random selection works when programming

What do you need?

e PC or laptop (with USB output) with the mBlock software installed, the web version
(also for Chromebook), or a tablet with the mBlock app installed

e The mBot2 with a CyberPi (multiple mBot2 and/or CyberPi if possible, for the Trying
Out step)

e A USB-C cable or Makeblock Bluetooth dongle

e Color cards (blue is suggested)

B Lesson plan

This lesson consists of four steps and takes a total of 45 minutes.

Duration Contents

1. Warming up

5 minutes e A LAN connection in everyday life

e How to set up a LAN connection with mBot2 and CyberPi

2. Hands-on
e Getting acquainted with the different code blocks to set up a LAN
connection
10 minutes . _)
e Recreating and testing programming examples of the LAN

connection

Section 3 - Trying out

25 minutes e Making your own game

4. Wrap-up
e Showtime: show what you did with your robot in a fun, short movie
for later discussion
e If your teacher allows, share the end result on social media with
the hashtag #mBot2LAN

e Reflection: What are you most proud of? What would you like to

5 minutes

improve about your robot?

© education.makeblock.com 83

makeblock

education

:= Activities

1. Warming up
(5 min)

Step 1: Warming up
This step consists of two parts:
1. A LAN connection in everyday life

2. How to set up a LAN connection with mBot2 and CyberPi

1. A LAN connection in everyday life

LAN stands for Local Area Network, and it describes a network of computers and peripherals
with a certain spatial extent, usually within a building. The network enables the computers to
exchange data with each other inside this network, and (not mandatory) with other networks
like the internet. Therefore, they need some kind of connection (wired by cable or by
wirelessly/WIFI by radio waves) and a common “language” (called protocol). Normally, the
individual computers connect to a managing device that switches and routes the traffic of data
("router”). On a WIFI network this is a dedicated access point or the Internet router offers a
built-in n access point.

Can you think of some examples where a LAN network is used? In this lesson, the mBot2 and
the CyberPi are the different devices that communicate with each other over a LAN

connection.

2. How do you set up a LAN connection with mBot2 and CyberPi

To set up a LAN connection between mBot2 and CyberPi you don't need much. The mBot2 and
the CyberPi (or mBot2 among themselves) will automatically be able to communicate with
each other wirelessly, there is no need to connect to a Wi-Fi Access point or router for this.

Is a router used? Then all the mBot2 and CyberPi must be put on the same channel of the

router. This needs to be set in the router's settings.

Step 2: Hands-on
This step consists of two parts:
1. Getting acquainted with the different code blocks for the LAN commmunication

2. Reproduce and test programming some examples of the LAN communication

1. Getting acquainted with the different code blocks for the LAN communication

In mBlock, there are several code blocks that you can use to set up a

LAN connection. You will find these code blocks in the 'LAN' category EE
of the block field in mBlock. These code blocks are green.

The table below shows an example of these code blocks to set up a

LAN connection.

Code block:

B broadcast message on LAN

This code block allows you to send a message to all other mBot2 and CyberPi on the same
network. You can name the message (like a topic).

Code block:

BB when receiving boadcast on LAN

Instead of constantly checking for a received broadcast, there is an event-block. The code
attached to this block is only executed once, if a message with the specified topic is received.
In the programming example below, there are two mBot2 and/or CyberPi communicating
with each other over a LAN connection using these two code blocks. The first program is the
“"broadcasting unit”, intended for the first mBot2 or CyberPi. The second program is the
receiver-code for the second mBot2 or CyberPi. You can upload both code parts to both
CyberPi/mBot2, since the underlying code will make sure that the sending unit does not

receive its own message.

© education.makeblock.com 85

makeblock
education

0B when button A v pressed

B broadcast message on LAN

B when receiving @Q2{=]uly boadcast on LAN

&2 turns left v @IeD ° until done

EH play hi v until done

After uploading the programming codes, you must restart the mBot2 and/or CyberPi.
Now when you press A button of the first mBot2 or CyberPi, the second mBot2 or CyberPi
will receive the sent message (e.g. welcome). What happens if you press B on the second

CyberPi or mBot2? What would you need to change to send different messages back?

Code block:

BB broadcast message with value o on LAN

This code block allows you to send a message (with a given topic like before) and a specific

value (number or text) to all other mBot2 and CyberPi on the network.

Code block:
For the receiving code, you can use the same event block and specify the topic it should react
to exactly like the previous example. To make use of the value (text or number), there is a

dedicated reporter block:
& B LAN broadcast value received

In the programming example below, there are two mBot2 and/or CyberPi communicating
with each other over a LAN connection using these two code blocks. The first program is the
"broadcasting unit”, intended for the first mBot2 or CyberPi. The second program is the
receiver-code for the second mBot2 or CyberPi. You can upload both code parts to both
CyberPi/mBot2, since the underlying code will make sure that the sending unit does not

receive its own message.

BB when joystick middle pressed v

broadcast message with value o on LAN

B when receiving (l:ls19 boadcast on LAN

0B show label 1 » LAN broadcast value received at center of screen ¥ by middle v pixel

After uploading the programming codes, you must restart the mBot2 and/or CyberPi. If you
now press the joystick on the first mBot2 or CyberPi, the second mBot2 or CyberPi will

receive the sent message (value 1).

2. Reproducing and testing programming some examples of the LAN communication
In the table above, each code block of the LAN connection is accompanied by a programming
example. You are going to recreate these programming examples in mBlock and test them. For

one programming example, come up with your own extension.

3. Trying out

(25 min)

Step 3: Trying out

You have already learned a lot about the LAN connection of the mBot2. You are now going to
create your own computer program in mBlock using the LAN commmunication.

In this assignment you are going to program a game by yourself. It is called 'Looking for ... the
color blue'. In this game, a group of mBot2 searches for the color blue on the floor. If one of the
mBot2 finds the color, it will inform the others via a LAN message and win the game.

Sounds quite complicated! Fortunately, you don't have to program everything yourself. Below
YOU can see a programming example. The same program should be uploaded to all mBot2 so

they all follow the same instructions.

© education.makeblock.com 87

makeblock
education

0B when button A v pressed

Equad rgbsensor 1v probe (2)R1 v detected bluev ? _or Equad rgbsensor 1+v probe (3)L1v detected bluev ? Jthen
B broadcast message m on LAN
&2 stop encoder motor all »
CBLED allv displays (
OB play yeah v until done

stop all v

hi E ultrasonic2 1 v distance to an object (cm) | < G then

&% moves backward v at @ RPM for e secs
else

random_moves

B when receiving @ boadcast on LAN
&% stop encoder motor all »

OB LED all v displays

I H play sad v until done

stop all »

To make the mBot2 drive randomly, you can use the following code block:

This code block is used to randomly select a value within a certain range. A particular
instruction can be assigned to each value of the range. In this way, the mBot2 can choose in a
non-linear way from a number of instructions. To make your program easier to understand, you

can separate the blocks for this instruction and place them under a custom block, which you

can then use in your main program:

define random moves

set turn v to pick random o to o

&2 moves forward v at @ RPM for ° secs

&0 turns left » ° until done

&% moves forward v+ at @ RPM for o secs

&% turns right v ° until done

You only have one mBot2? Then you can simulate the communication between two devices by
including a sprite in the mBlock stage. The stage is the area on the upper left corner of the
mBlock's screen.

You need to add a new extension to the code blocks for the sprite and the mBot2, called
"Upload Mode Broadcast”. It allows you to send and receive messages between the sprite and
the robot while the robot is in Upload mode, similar to the messages sent via LAN

communication.

Extension Add
For the sprite e Click on 'Sprites'
- e Click on 'Extensions'

e . , . . .
~ e Click on 'Sprite extensions

e Find the extension labelled

r"‘-’r

"Upload Mode Broadcast” and

add it
Upload Mode Broadcast

For mBot2 By mBlock official = [[e Click on 'Devices
By adding this extension, you e Click on 'Extensions'
enable a device to interact e Click on 'Device extensions'
with a sprite in the Upload . .
_— e Find the extension labelled
ode.

"Upload Mode Broadcast” and
+ Add add it (might not be on the first

page of the Extensions library)

© education.makeblock.com 89

makeblock

education

In this programming example, when mBot2 has found the color, it will send a message to the

panda sprite in the stage of mBlock, and the panda will say that the mBot2 has found the color.

when button A v pressed

Equad rgb sensor 1+ probe (2)R1 v detected bluev ? _or Equad rgb sensor 1 v probe (3)L1 v detected bluev ? Jthen
o-‘\ send upload mode message @
20 stop encoder motor all »
OB LED all v displays |

stop all v

if E ultrasonic2 1 +» distance to an object (cm) | < e then

&% moves backward v at @ RPM for e secs
else

random _moves

o.‘\ when receiving upload mode message @

LWVl mBot2 found the color!

play sound yes v until done

You can copy the above programming examples, but you can also come up with your own
extension. It is then useful to use the following step-by-step plan. Do you have any idea of what

you want to make? If so, first discuss with your teacher whether this is feasible.

Explanation

Step 1: What do you want to do? e What do you want to program?

Step 2: What do you need? e What materials do you need to do this?

Step 3: What code blocks do you e How are you going to make the mBot2 drive and
need? communicate?

e What code blocks will you use?
e Make a brief description on how your program
works (pseudocode/natural language, flowchart

or UML)

o If you need further explanation, you can discuss
with your fellow students, the teacher, or do a
research on the topic. There is help available for

every coding block in mBlock as well.

Step 4: Testing and e First version ready? Test it! During the testing

implementation round, write down points of improvement

e Work on the improvement points until the mBot2
does exactly what you had in mind

e Successful? Film the end result and ask your
teacher if you can post it on social media with the

hashtag #mbot2LAN

Step 4: Wrap up

Did you succeed in programming the game?
In this lesson, you learned what a LAN connection is and where you might encounter it in
everyday life. You know how to set up a LAN connection between different devices. You also
learned how to create your own LAN network using the mBot2 and the CyberPi. In addition, you
know how to add a random selection to a computer program.
It is now time for a brief reflection. Think on your own and discuss with the group:

e What do you think worked out well?

e What could be better?

e Which parts of the lesson did you find easy and which did you find more difficult?

e What would you like more explanation about?

e \Who could help you with that?

© education.makeblock.com 91

makeblock
education

Lesson 8:

mBot2 at your service

Subject: STEAM Grade(s): 5" and up

Duration: 45 minutes Difficulty: Intermediate

By the end of this lesson, students will be able to:
e Make the mBot2 carry out tasks using speech recognition and WIFI connection
e Combine speech recognition with variables for dialogs
e Send messages via cloud messaging

e Use Boolean statements with sensor data

Speech recognition is the technology that converts the spoken word (but also entire
sentences) back into text. It is a quite computational task to recognize even a single word
just by the variation in frequency. And to be of practical use, speech recognition should work
independently from an individual voice: having a high or low voice, slow or fast speaking
should not make any difference. Speech recognition is a part of user interaction in consumer
electronics (like smartphones, TVs, smart home), but also for assistive systems. In this
activity, you will program a short dialog with the mBot2 acting as a service robot. You can

extend this task later to simulate a user dialog for other tasks as well.
Focus

By the end of this lesson, students will know:
e What speech recognition is and how to apply it
e How to make an internet connection using WIFI
e How to use speech recognition and develop a dialog with the user
e Send messages to remote computers via cloud messaging

e Use variables to describe a stage in a process (like ordering, user interaction)

What do you need?

e PC or laptop (with USB output) with the mBlock software installed, the web version

(also for Chromebook), or a tablet with the mBlock app installed

e The mBot2 with a CyberPi
e A USB-C cable or Makeblock Bluetooth dongle

%Lesson Plan

This lesson consists of four steps and takes a total of 45 minutes.

Duration

Contents

5 minutes

1. Warming up
e Speech recognition in everyday life

e Getting to know speech recognition with mBot2

10 minutes

2. Hands-on
e Setting up a WIFI connection
e Programming and applying speech recognition

e Cloud messaging

25 minutes

3. Trying out
e Programming mBot2 to become a robot waiter

5 minutes

4. Wrap-up
e Showtime: show what you did with your robot in a fun, short movie
for later discussion
e If your teacher allows, share the end result on social media with
the hashtag #mBot2WIFI
e Reflection: what are you most proud of? What would you like to

improve about your robot?

© education.makeblock.com 93

makeblock

education

:= Activities

1. Warming up
(5 min)

Step 1: Warming up
This step consists of two parts:
1. Speech recognition in everyday life

2. Getting to know speech recognition with the mBot2

1. Speech recognition in everyday life

Speech recognition is the technology that can identify words and sentences in the sound of the
human voice and translates this back to text. This is a very computational task, since what all
the algorithms can look at is a change of frequency over time. But even this differs from person
to person - just think of low or high voice, speaking fast or in a dialect. Even the mood can
change the "tone"” which the same sentence sounds like. The research of decades in computer
science and linguistics allows these complex tasks to be incorporated more and more in
everyday life.

Some recognition systems require a form of “training”, where the user reads specific texts
known to the detecting algorithm - adapting a computer model to the individual tone of voice.
Other only identify very specific words - they are used in user dialog systems mostly. Some
systems can recognize and translate texts regardless of the context.

The CyberPi and the mBot2 can use voice recognition without the need for complex coding.
However, since the output is “just” text, the program must analyse it and process further.
Speech recognition is used in consumer electronics like TVs, smartphones or smart homes to
give extra comfort for the user — asking for a connection, putting an appointment into the
calendar, or having the room temperature and light changed just by telling.

Next to comfort only, speech recognition can be a great help for disabled people or provide
extra safety, e.g., a driver in a car can approve a navigation change due to upcoming traffic
jams just by voice, instead of interacting with knobs or a screen-based interface.

In this activity, you will make use of some of the features of voice recognition.

2. Get to know speech recognition with the mBot2

The mBot2 offers a speech recognition based on block coding - it is as simple as starting the
recognition for a certain time (like 2, 3 or 5 seconds) using a single block and retrieving the
recognized text as a string by another block. The coding blocks will be explained below.

This voice recognition can understand many different languages and is not restricted to a small
set of predefined words. Therefore, it is a very computational task - it is so demanding, that the
mBot2 or the CyberPi can't handle it themselves... they need to call for support using the
internet. That's why first of all, an Internet connection must be established, and a user account
is required as well. Setting up a user account generates a "key"” to sign in into the services used
(for data usage and privacy see below)

The speech recognition records the audio like you did this in the 3rd activity, and then sends this
recording to a very powerful network of computers for processing. They take care of the
translation back to text and send the text back to the CyberPi/mBot2. The network of
computers is usually referred to as "the cloud”. It is not a specific computer anymore but rather
a huge cluster of them shifting the computational tasks between them.

You can use the Internet for transmitting data between multiple CyberPi's in different
networks and locations as well (like in school and at home). This digital service is processed in

the cloud as well.

Data usage and privacy note:

Speech recognition requires an internet connection for transferring the recorded audio and
sending back the transcribed text. The recorded audio is processed on servers in Europe, the
Microsoft Azure cloud, but it will not be stored permanently. For using the services, a “key" is
required, that will automatically be generated by creating a user account on Makeblock.com
and used internally by the coding blocks. There is no need to manually enter this key anywhere.
Apart from an Email and a self-chosen password, no further personal information (like names,
pictures, gender...) is mandatory.

The internet connection requires a WIFI access via SSID (that is the name of the wireless
network) and password - certificate-based logins are not supported. The SSID and password
are stored with the program in plain text, so using a temporary hotspot might be a good idea.

Ideally, you can use a smartphone with a flat-rate data plan.

© education.makeblock.com 95

makeblock
education

Step 2: Hands-on:
In this step you will get acquainted with the different code blocks of the Al and loT functions.
This step consists of three parts:

4, Setting up a WIFI connection

5. Programming and applying speech recognition

6. Messaging and Communication in LAN and Cloud

1. Setting up a WIFI connection

Open mBlock and connect the CyberPi in the 'Devices' tab. Switch to

upload mode. Once connected look for the Al (Artificial Intelligence) block [B
category in the code blocks and click on it. You will now see the available Al

functions including speech recognition (if the blocks are greyed out, you

forgot to switch to upload mode...).

Code block:

I B connect to Wi-Fi @ password

This block starts connecting attempts to the wireless network provided. You need a router
or an access point that allows devices to connect with the network and access the Internet.
Some schools might only allow known devices — each network adaptor (wired or wireless)
has a unique number, the MAC address. If this number is unknown to these secured
networks, they refuse the connection even if the password is correct.

The easiest way around this then is a temporary hotspot, e.g. by a smartphone with a flat-
rate data plan that is used only for the CyberPi/mBot2 in a lesson (check your school's legal
regulations).

Any blocks following this code block will be executed immediately, so it does not wait for a
connection to be made ("non-blocking”). You need to code a waiting routine yourself with

the next block:

Code block:

& B network connected?

This Boolean block checks if the connection to the network could have been made - if so, it

reports a True. You can use this together with a wait block:

wait until T B network connected?

This combination stops all further code executing in the same thread until a connection is
successfully made. You might want to make this more user-friendly at a later stage,

informing about connection attempts, indicating a successful connection, or even adding a

time-out (like a reboot if no connection can be made for 30 sec.).

To use speech recognition, you need to connect the CyberPi to the Internet. Below you will see
the programming example that you will use in order to have the CyberPi connect to the

Internet. As soon as the CyberPiis connected to the Internet you will see this on the display and

the LEDs will turn green.

B when CyberPi starts up

BB connect to Wi-Fi @ password
BB display [

wait until @B network connected?

BB display

These examples use an event-based approach, so one thread in the program tries to enable the
internet connection on start-up. The other threads start the recognition. But for now, it does
not check if the Internet connection ban be established before continuing - nor does it give any
indication to the user about what is happening except if it was successful. You might want to

change this at a later stage when trying out own ideas...

© education.makeblock.com 97

makeblock

education

Make sure that you put in the name (5SID) and password for the WIFI network correctly (the
picture shows an example!). These are both case sensitive. Connect the mBot2 to your
computer with a USB cable and switch on the upload mode. Recreate the programming code
from above and try if the code works. A tip is to do this with a hotspot from your cell phone, as
a school network often only allows known devices to connect (white-listed MAC addresses).
Make sure that the data plan covers the internet usage! Now connect the CyberPi to your
computer.

You have now connected the mBot2 to the Internet. You can now communicate with the mBot2
via the cloud. This is what you call Internet of Things (loT).

If you are using a separate CyberPi to show the status (like the order sent to the kitchen or the
delivery process), it must connect to the same WIFI network. This is to make sure that both
devices (mBot2-Cyberpi and stand-alone CyberPi) are using the same channel in the WIFI
network. The router/access point decides on the channels. This ensures that all devices are on

the same channel for data exchange. You can also refer to LAN communication in lesson 7.

2. Programming and applying speech recognition

You are now going to program and test the speech recognition. You are going to supplement
the programming code in which you let the mBot2 connect to the WIFI with a code for speech
recognition.

Code block:

BB speak auto v | QUILANWCTT

This code block will be used in an example below - it does the opposite of speech recognition:
with this block you can make the CyberPi/mBot2 read out loud a text provided. Here the
text is transferred to the cloud service, and the audio file synthesized is sent back. It has an
auto-detection on the language used, so the spoken language should be the same as the
text uses.

Code block:

@B recognize (4) English v o secs

Speech recognition is available in 12 different languages. If your native language is not
supported, maybe you can use English. This code block starts an audio recording for the
specific time and sends it to the cloud service for detection. For the results, you need the

following code block:

Code block:

B speech recognition result

The results from the speech recognition can be accessed through this reporter block. You
can save the result to a variable, in case you need to re-use it, or display it on the screen or
process further with some analysis (like "does the text contain the word ‘yes'?").

Code block:

0B translate into Chinese »

The Al features even allow for language translation of texts. This code block is a reporter
block that allows you to translate the text provided into a (supported) language of your
choice. You could use this block together with the previous ones and the knowledge you
gained from previous activities and build a voice-operated translator: press a button and

translate 5 seconds of speech to a foreign language...you could even try different ones and

test your foreign language skills .

In the programming example below, the mBot2 is programmed so that when you press button
B, the mBot2 recognizes speech for 3 seconds. The result is shown on the CyberPi display and
the recognition is spoken. Recreate the programming code below and test it out. Check what
you said and what was "understood” and translated back.

Does it work? Then see what else you can do with speech recognition!

B when CyberPi starts up

BB connect to Wi-Fi @ password
OB display [

wait until T B network connected?

BB display

© education.makeblock.com 99

makeblock
education

0B when button B v pressed
B recognize (4) English v o secs
OB show label 1+ (QEH Speech recognitionresulty at center of screen v by middle v pixel

I8 speak auto v [B speech recognition result

You can also use speech recognition to voice-control mBot2. You can assign certain instructions
to certain speech recognition results, but be aware of how specific you are with the results. For
example, you could build the instruction to only recognise "yes” when the button B is pressed.

But what happens if you say “definitely yes” or "yes of course"? Then a direct matching with...

B speech recognition result = (@Y7 ~then

... would not work... the recognition result would be different (string "yes" is not equal to string
"definitely yes"”). In order to allow a broader set of answers all meaning “yes", you can simply

check if the answer-string contains the word "yes":

B speech recognition result contains ? then

3. Messaging and Communicating in LAN and Cloud
You can also use the result of the speech recognition to interact with multiple mBot2 or

CyberPi. In lesson 7 you have already learned about the LAN connection and how to set it up.

Next to sending a message on the LAN, which requires the devices to be
"local"” to each other, you can use another cloud service to send messages to [B
devices on remote locations — as long as they have an Internet connection.

loT

These blocks are located in the loT (Internet of Things) block category.

These blocks work identical to the ones handling the LAN communication:

0B send user cloud broadcast
BB when receiving user cloud broadcast

T B send user cloud broadcast with value o

& B user cloud broadcast value received

To make sure the remote side can communicate only with the devices you intend to, you need to
have a Makeblock user account. This will create a “key" for the cloud communication - this key
is hidden within the coding blocks and unique to a user. To make 2 remote devices communicate
over the Internet, both need to be programmed from the same user account.

The cloud broadcast blocks have the advantage of being able to communicate worldwide, but
they are not useful for speedy communication - it might take a few seconds for the message to
arrive. The LAN-broadcasts on the other hand are fast but work only locally.

Below you see a programming example that summarizes the above. Recreate the program first
and try if everything is working with the recognition and communicating between the CyberPi
and another mBot2. For this exercise, you need to upload the same program code in Upload-

mode to both devices.

B when CyberPi starts up

OB connect to Wi-Fi @ password
OB display [
wait until @B network connected?

OB display

OB show label 1 v @LQEIRGENLIIIL-IIEYY at center of screen ¥ by middle v pixel

OB show label 2 v at middle at bottom v+ by middle v pixel

© education.makeblock.com 101

makeblock
education

0B when button B v pressed

B recognize (4) English v o secs

0B show label 1 v (MEH Speech recognitionresulty at center of screen ¥ by middle v pixel
if I B speech recognition result contains @3 ? - then

0B broadcast message @23 on LAN

BB when receiving @) boadcast on LAN

% moves forward v m cm v until done

After you made sure everything works fine, you can modify and extend the example - maybe
directional commands? Think of lesson1 and the exercise to navigate the mBot2 manually

through a maze... can you do the same with voice-commands?

3. Trying out
[25 minutes]

Step 3: Trying out

Now you know how to make a WIFI connection, program speech recognition and deploy Cloud
or LAN messaging. It is now time to get started yourself. You are going to program a polite
service robot — a robot waiter. There are already restaurants in some countries where a robot
comes to take the order and brings the food from the kitchen. Take a look at the following

video: https://www.youtube.com/watch?v=FFCPKmLAZb4

https://www.youtube.com/watch?v=FFCPKmLAZb4

The robot waiter you are going to make must be able to do a number of things:

e Drive along a straight line

e Stop at ared area (your table), take an order and send the order to the kitchen

e Additional option: if a second mBot2 or CyberPi is available, then display the orders to
the kitchen (so they can start preparing the food already)

e Continue driving until the mBot2 encounters a green surface (the kitchen) and stops to
pick up the food from the kitchen

e Optional: if a second mBot2 or CyberPi is available, then give a notification that the food

is being delivered

The start-up sequence is nearly identical to the previous examples — remember to putin the

correct SSID and password:

B connect to Wi-Fi @ password
BB display [

wait untili T B network connected?

BB display

I B show QUENEI Y at center of screen ¥ by middle v pixel

wait ° seconds

O B clear screen

The next code block is programmed in the same script field under the previous example. In this
code block, you instruct the mBot2 to start driving and then stop at a red marker to take the
order. After that, the mBot2 drives on to a green mark. The colour markers indicate the table
and the kitchen. To start easier, we assume they are in a straight line. If you have everything
working, you can extend this further and include the knowledge you gained from previous
lessons and make the robot follow a line to the table (the provided map has red and green
markers on the track that can be used for this purpose). Lesson 5 explains all about line
following...

As an extra addition to voice recognition, staying with the straight line between table and
kitchen, you can use cloud or LAN messaging to send the order to another mBot2 or CyberPi to

display.

© education.makeblock.com 103

makeblock
education

I8 when joystick middle pressed v

I8 clear screen

I

& moves forward v at @ RPM

wait until Equad rgbsensor 1v probe (3)L1v detected redv ? _or Equad rgbsensor 1v probe (2)R1v detected redv ?

&2 stop encoder motor all v

&% moves forward v at @ RPM

wait until Equad rgbsensor 1v probe (3)L1v detected greenv ? _or Equad rgb sensor 1+ probe (2)R1+v detected greenv ?

& stop encoder motor all »

OB broadcast message @Q{llRLE-EINTYY on LAN

You have to create yourself the block 'get_order' in 'My blocks'. This helps keeping an overview

of the main program - so it's just driving to coloured markers with getting the order in

between.

To actually define what “"get_order” means, let's first think about an order process:
1. Ask for the order
2. Recognize the answer
3. Check back that the understood order is correct

4. If yes, proceed (send order to kitchen and end the order sequence)

If no, ask again.

Checking is a sensible thing to prevent wrong orders. To translate these steps in a structured

way, you can use a flow diagram like the following one:

mBot2 asks:
"Dear guest. Your orders please.”

v

mBot2 records and recognizes voice
for 2 seconds

v

mBot2 asks:
"Did you say __speech result__?"

v

mBot2 shows speech result on CyberPi
screen

A

-

v

mBot2 records and recognizes voice
for 3 seconds

v

mBot2 says:
"Your meal will be
prepared immediately” "Yes"

Contains

Other mBot2 says:
“Sorry.
Please repeat your

Speech result

From here, it is much easier to create the necessary coding blocks: you start with the code block

'get order'. You create this code block again in ‘My blocks'.

define get order

set order status v to o

TBLED allv displays ()

R SRR TN G Dear Guest! Your orders please?

repeat until order status > o

OB LED all v displays '

B recognize (4) English e secs

OB turn off LED all »

set order v to [B speech recognition result

0B show {order) at center of screenv by middle v pixel
OB LED all v displays

B speak auto v | join order

OB LED allv displays

EB recognize (4) English » o secs

OB turn off LED all »

0B show (@R speech recognitionresulty at center of screen ¥ by middle v pixel
if "B speech recognition result contains @23 ? - then

set order status v to o

R SRR TN G Your meal will be prepared immediately.

B broadcast message {§ielele)) with value order on LAN

else

SRR GR A Sorry. Please repeat your order

In addition, you need to create two variables. In one variable we will store the recognition result
from the order, so if everything was understood correctly, this can be sent to the kitchen
(attention: checking back with yes/no - the answer to this would override the previous
recognition result in the report block; that's why we need to store the recognized order in a

variable).

© education.makeblock.com 105

makeblock

education

The second variable keeps track of the entire process: is the order complete (meaning,
understood correctly)? If not, the ordering process will start all over again. This second use of
the variable reports on process data (stage).

You can use the knowledge from previous lessons to help with the program, e.g. light up LEDs
to make the user understand that the robot is about to speak (green) or listen (red), or you can
use the screen on the waiter-mBot2 to display data. Use this at checkpoints in your program, so
evaluate if your code works and give feedback to the users.

As an extra addition, you can use cloud or LAN messaging to send data to another mBot2. For a
better learning experience, there are examples on how to solve specific tasks in this lesson. You
can refer to them in case you have problems with your own code or get ideas on how to deal
with a specific situation. In general, it is better to get a draft working and refine the code in
iterations rather than trying to have everything done and programmed perfectly at once. Start
with the driving sequence and instead of having the 'get_order' block ready, just make a beep
there to show that everything is working so far. Then work on the order process but keep the
driving out. This way you can iterate faster without the robot having to drive between the
markers every time you want to try your code. as final stages, combine them to solve the given
task.

In the programming examples above, you also sent a message to a second mBot2 as an
additional option. For example, in the 'order process' you have said that once the customer
confirms the order the mBot2 sends a message via cloud or LAN messaging to a second mBot2
or CyberPi (for displaying the incoming orders in the kitchen). Now you have to program the

second mBot2 to receive the message.

B when receiving §{elsls) boadcast on LAN

0B show | @B LAN broadcast (g{=lsl:§ value received at center of screen ¥ by middle v pixel

T B clear screen

In the programming example below, the kitchen receives the order and displays it. Create the
programming example below in the same script. Place this next to the first programming

example. This way you keep the script clear.

In the programming example 'controlling a robot' you have programmed that after detecting
the green area a cloud message is sent to the customer to inform him that their order is
coming. This is also programmed in the same script field next to the other blocks - you could
use another CyberPi (as a smart device on the customer's table) to inform about the order

status:

0B when receiving @{elleRliNsENY-1.% boadcast on LAN

B play LED animation rainbow v until done

OB play yummy v until done

B8 turn off LED all »

When you have programmed everything, your script area will look like this:

when receiving @lslsj) boadcast on LAN

I8 connect to Wi-Fi @ password 0B show | B LAN broadcast §{ll-)) value received ' at center of screen * by middle v pixel
I8 display [] wait ° seconds

waituntil TB network connected? OB clear screen

I8 display

8 show at centerofscreen v by middle v pixel when receiving (Q{LIRLEEIELYY boadcast on LAN

wait n seconds OB play LED animation rainbow v until done

OB clear screen OH play yummy v until done

OB turn off LED all »

OB clear screen
&% moves forward v at @ RPM

wait until Equad rgbsensor 1+ probe (3)L1v detected redv ? _or E quadrgbsensor 1v probe (2)R1v detected redv ?

&% stop encoder motor all

get order

&% moves forward v at @ RPM

wait until E quadrgb sensor 1* probe (3)L1* detected greenv ? _or 9 quad rgb sensor 1+ probe (2)R1v detected greenv ?

&b stop encoder motor all v

B broadcast message (QlRLN-EINEIYY on LAN

© education.makeblock.com 107

makeblock

education

define get order

set order status v to o

OB LED allv displays (

- R SRR Dear Guest! Your orders please?

repeat until order status > o

OB LED all v displays (

B recognize (4) English » o secs

OB turn offLED all v

set order v+ to [B speech recognition result

OB show {order at center of screen v by middle v pixel
OB LED all v displays

B speak auto v = join order

OB LED all v displays

I8 recognize (4) English v ° secs

08 turn offLED all »

B show (fCH speechirécognition'resulty at center of screen v by middle v pixel

if I8 speech recognition result contains ? then

set order status v to°

R SRET SR AN Your meal will be prepared immediately.

0B broadcast message {slslsP with value ' order on LAN

else

R SRET RN Sorry. Please repeat your order

You need to upload this code to all the mBot2s and/or CyberPi's you want to use. It can be the
same code because they are automatically connected via the LAN or Cloud connection — and
the one sending the message won't react upon it.

Create a straight line for the mBot2 to drive along and make sure there is a wide red and green
marker. Upload the code and try whether the robot waiter is processing the customers' orders.
Of course, there is always room for improvement. Adjust the code where you think it could be
better or prettier. Maybe you start with a line-follower that can take the orders? Or you extend
this exercise further and have a dedicated waiter mBot2 taking the orders and a delivery mBot2
that will bring the food? You can cooperate with other teams in your class and integrate their

robots...

Discuss possible extensions like these in the class when reviewing the progress so far and

elaborate a use case with multiple robots - it doesn't need to be a restaurant...

Step 4: Wrap up

Did you succeed in programming the waiter-bot?

In this lesson, you learned about speech recognition and speech synthesis and how to apply it
via a cloud service. You managed to connect the mBot2 to the Internet and so send data locally
or even remotely.

Creating a dialog (like for ordering a meal) was part of the exercise, and you learned to filter
the text answer for specific trigger words to have a more 'natural’ conversation (not expecting
the user to answer with specific responses only).

It is now time for a brief reflection. Think on your own and discuss with the group:

© education.makeblock.com 109

What do you think worked out well?

What could be better?

Which parts of the lesson did you find easy and which did you find more difficult?
What would you like more explanation about?

Who could help you with that?

makeblock
education

Lesson 9:

mBot2 in the wild

Subject: STEAM Grade(s): 5" and up

Duration: 45 minutes Difficulty: beginner

By the end of the lesson, students will be able to:

e Integrate Machine Learning into programming the mBot2

e Make multiple technical features of the mBot2 work together

e Establish a communication between the robot and the computer, even though the
robot is running independently in upload mode for interaction between physical

hardware (robot) and sprite stage of mBlock software

Machine Learning is a weak form of Artificial Intelligence (Al). Artificial Intelligence refers to
devices or machines that mimic human intelligence. Based on collected data, Machine
Learning enables computer or robot systems to choose actions based on history of data and

probability without the need to explicitly formulate an algorithm for it.

Focus

By the end of the lesson, students will know:

¢ What Machine Learning is and how to apply it,

e How to make mBot2 work based on conditions,

e How the different technical features of mBot2 work together in an ecosystem,
e Establish a communication protocol between the robot running programs

independently and the computer

What do you need?

e PC orlaptop (with USB output) with the mBlock software installed, the web version

(also for Ch

romeBook)

e The mBot2 with a CyberPi
e A USB-C cable or Makeblock Bluetooth dongle

e Webcam, on your laptop or external

e Printer (optional) or paper, pencils and markers for drawing or smartphone to display

pictures

%Lesson Plan

This lesson consists of four steps and takes a total of 45 minutes.

Duration

Contents

5 minutes

1. Warming up
e Machine Learning in everyday life
e Getting to know the Machine Learning

25 minutes

2. Hands-on
e Applying Machine Learning
e Machine Learning in combination with the mBot2 in mBlock
e Establishing a communication protocol from inside running
programs

10 minutes

3. Trying out

e Final task: ecosystem of a mouse

5 minutes

4. Wrap-up
e Showtime: show your ecosystem in a fun, short movie for later
discussion.
e If your teacher allows, share the end result on social media with
the hashtag #mBot?2
e Reflection: What are you most proud of? What would you like to

improve about your robot?

© education.makeblock.

com M

makeblock

education

:= Activities

1. Warming up
(5 min)

Step 1: Warming up
This step consists of three parts:
1. Machine Learning in everyday life
2. Getting to know the Machine Learning extension in mBlock

3. Applying Machine Learning

1. Machine Learning in everyday life

Machine Learning works on a statistical basis: training data is provided to the algorithm, like
pictures of different objects plus their descriptions. The learning phase then tries to distinguish
best between these pictures and match each picture to the correct category. After this phase,
the learned patterns are tested against new sets, and the learning can be reinforced. The
difference to “classical” sorting programs is that there is no clear indication beforehand on

how to decide between the different categories, like you can differentiate between colors.

By "learning from past data” the computer program can better adjust to changing situations.
Think about facial recognition on your phone: the first times after setting this up, it is harder
for the phone to correctly identify you, but over time, the algorithm “learns” to identify your
face in different environments as well. Machine Learning is broadly used in image classification
(e.g., on social media) to automatically analyze what pictures uploaded show: a cat, a dog,

furniture, people etc.

Machine Learning is considered as “weak Artificial Intelligence”, since the computer program is
not aware of itself nor can “think” like we do - but its current behavior is influenced by data

collected and analyzed.

2. Getting to know the Machine Learning extension in mBlock

In mBlock there is a Machine Learning tool. You need to add this tool from the extension

library. Proceed as follows:

Click on 'Sprites'.
Click on 'extensions' (at the
bottom in the middle of the

screen).

You will now enter the extension
library. At the top of the screen, click
'‘Sprite Extensions'.

Find the extension 'Teachable

Machine' and add it.

The extension will now be added to
the code blocks. You can recognize
the extension by the abbreviation TM
in green.

Make sure you have a working

webcam.

Device- Sprites
X
Sprite
% Panda

Panda
X
0
° Size
Show
® | ©

Background control

Sensing

=2

0 Operator:

Direction

—

extension

g»

Sprite Extensions

Teachable Machine
By mBlock official I:l E

With Machine Learning, you
don’ t have to program but
still can train computers to

learn things and establish

+add -

Data Chart
By mBlock official [J Q

Use this extension to visualize
your data. A chart speaks
louder than lengthy words.

+ Add

™

e Click on the 'Training model' button.

© education.makeblock.com

Training model

113

makeblock

education

The extension consists of a training model in which you can ‘teach’ to differentiate between
sets of pictures taken with a webcam. The basic model you see consists of 3 categories. If you

want more, click on "build a new model” and choose the number of categories.

Some advice:

e Think about the number of categories and the recognition beforehand. You cannot add
a category later, you would need to start all over again.

e Choose 1extra category to be used as "background”. So, if you want to recognize 2
different animals by pictures you hold in front of the webcam, choose 3 categories: The
third one will be the one where there is no picture of an animal shown. Otherwise, you
“force" the model to decide e.g., between cat and dog, even if the webcam shows the
empty background.

e Background should generally be simple and static (not: classroom with pupils, webcam

looking at the pupils etc.) with a clear contrast to the objects to be recognized.

The images will be analyzed just on the computer and the result can be stored. The pictures
themselves will not be kept! So, if you save the program file in mBlock and reopen it later, you
won't see the original pictures the model was trained on. You can always add new pictures to

existing categories, but not delete single ones (only all pictures and learnings from a category).

You can directly 'teach’ the categories using images taken with the camera. You will use the
standard 3 categories for this exercise:
1. You can start with the mBot2. Place it on the desk and align the camera to get a good
view - or hold it steady in your hand if you use a laptop with a built-in camera. Then
click the 'Learn' button. Hold the button until the camera has recorded at least 20
samples. Above the mosaic of samples, you can see the number of samples stored for
this category. Give this category a name, for example 'mBot2'.
2. Now choose something else, e.g., a notebook, hold it in front of the camera and click on
the 'Learn' button. Hold the button until the camera has recorded at least 20 samples.
Give this category a different name, for example "notebook".
3. Now record the "background”. This should be used whenever none of the other objects
are presented to the camera. Click and hold the 'Learn' button until the camera has
recorded at least 20 samples. Give this category a different name, for example

"background".

S

Learn

20 Samples Gothing >

You have now 'trained’ the Machine Learning different objects (mBot2, notebook and

background) that the algorithm will now recognize in the camera picture. For every category
you can see a bar measuring a percentage. This represents the confidence that the algorithm
has in the recognition result. You can increase the percentage of confidence by increasing the
number of samples and doing some slight variations like changing the angle of the object. This
will help the camera recognize the objects even better and faster.

You can test the recognition live without the need for any coding at this stage. Add pictures
until the recognition is fast and accurate (not switching between results and showing a high
percentage >20%). Are you satisfied? Then click on 'Use the model'. You will now return to the

screen for coding on sprite level.

© education.makeblock.com 15

makeblock

education

There are three new code blocks now. One block

will report the recognition result (as you typed

it), the second one is the confidence for a given Training model

category and the third one is the Boolean block Open recognition window

for conditional statements. It lets you choose
recognition result

the category by a drop-down menu. If you click
on one of the code blocks, a new window will confidence of mBot2 w

appear. This is the recognition window, which = _
recognition resultis mBot2 v ?

displays the camera image and the recognition
result. Now your webcam functions as a smart

sensor, identifying different objects or pictures.

2. Hands-on

(25 min)

Step 2: Hands-on

This step consists of three parts:

1. Applying Machine Learning
2. Machine Learning in combination with the mBot2

3. Establishing a LAN connection

1. Applying Machine Learning

You have ‘taught’ two different objects, the mBot2 and a notebook, plus the background to
the Machine Learning model. Now you can use the output of the recognition like any other
sensor blocks in your program code. You can use conditional statements to differentiate
between the objects and assign a certain action separately to each result.

You are now going to try to make the sprite (in this case the panda) talk when the webcam

recognizes a learned object.

On the right you see a programming example.

. when this sprite clicked
Reproduce the programming example and see

what the panda does when the webcam (SIS

. . i iti i ?
recognizes your learned objects. if recognition resultis mBot2 v ? “then

Was it successful? Then investigate what other S Hello!

possibilities there are. Can you make the panda

if recognition resultis notebook v ? _“then

jump or walk?
CEVAML time to write!

if recognition resultis nothing v ? “then

oy @

2. Machine Learning in combination with the mBot2

Now you know how to make use of the Machine Learning extension for image recognition and
control a sprite with it, for example the panda. You are now going to learn how to
communicate from the computer to the mBot2 running its own program. For this the mBot2
needs to stay “connected” to the computer - this is done via USB cable or the Makeblock
Bluetooth Dongle. The dongle allows the robot to move independently from the computer; if
you use a USB-cable, make sure you only perform slight movements of the mBot2, like small
turns and distances.

With this connection in place, the sprite (in this case the panda) can send data to the mBot2.
The mBot2 receives this data and the program running on the robot can react to it.

You need to add a new extension to the code blocks for the sprite and the mBot2, called

"Upload Mode Broadcast".

© education.makeblock.com 17

makeblock

education

Extension Add
For the sprite e Click on 'Sprites'

g —— e Click on 'Extensions'

e Click on 'Sprite extensions'

e e Find the extension labelled
"Upload Mode Broadcast” and

add it
Upload Mode Broadcast

For mBot2 By mBlock official = [[e Click on 'Devices
By adding this extension, you e Click on 'Extensions'
enable a device to interact e Click on 'Device extensions'
with a sprite in the Upload

e Find the extension labelled
Mode.
"Upload Mode Broadcast” and

+ Add add it (might not be on the first

page of the Extensions library)

In this way, the extension will be added both for the mBot2 and the sprite. In mBlock it
appears in dark blue. Click on the new extension and see the different code blocks associated
with it. Basically, the extension adds a communication protocol. It allows you to send and

receive messages between the sprite and the robot while the robot is in Upload mode.

3. Establishing the connection with the mBot2

You have now installed all the necessary extensions for the hardware and software to be able
to communicate with each other. Now you will program the mBot2 to be controlled by
Machine Learning. The idea is that the mBot2 will perform actions based on recognition
results. You programmed a similar task earlier just for the sprite (mBot2, notebook, and
background).

Now, the recognition results must be sent and received over the connection between the Bot2
and the computer (either cable or wirelessly via Bluetooth Dongle). The receiving code uses
events, so the corresponding code is executed, once the message is received. With events there
is no need to check for a sensor or message in a loop, making the code more efficient and
easier to understand.

You need to create two computer programs — one for the device (mBot2) and one for the

Sprite that uses the Machine Learning add-on:

Sprite program mBot2 program

when this sprite clicked o.‘\ when receiving upload mode message

OB play yeah v until done

i recognition resultis mBot2 v ? Jthen &% moves forward v at @ RPM for e secs

o-‘\ send upload mode message

o.‘\' when receiving upload mode message

OB play surprised v until done

i recognition resultis notebook v ? “then

o-‘\ send upload mode message
&2 moves backward v at @ RPM for e secs

i recognition resultis nothing v ? “then

o-‘\ send upload mode message

After reprogramming the above code blocks, make sure your computer stays connected to the
mBot2 if you use a cable (don't disconnect the cable). Ideally, they would be connected via
Bluetooth using the Makeblock Bluetooth Dongle, because this gives the mBot2 more flexibility

in driving around.

Install the dongle on the computer and turn on the mBot2. You
need to pair the mBot2 with the Bluetooth Dongle. You do this by
If you use the dongle: clicking on the button on the dongle. The LED will start flashing
and the dongle tries to connect to the closest Makeblock controller
(like mBot2 and others). In a classroom situation, make sure this is
done team by team, to ensure the corresponding match between

Dongle and mBot2. Once the pairing is done, you will hear a

beeping sound from the mBot2. This means that the computer and

the mBot2 have made a wireless connection.

The Makeblock Bluetooth Dongle will remember the last paired device and instantly
reconnects.
In case you don't have the Bluetooth dongle fromn Makeblock, you can verify the compatibility

of the Bluetooth in your computer via the following link: https://www.yugue.com/makeblock-

help-center-en/cyberpi/bluetooth-compatibility

Now switch mBlock to Upload Mode and connect the mBot2 to mBlock. Click the ‘Connect’

button and upload the computer program. You can now start testing!

© education.makeblock.com 19

https://www.yuque.com/makeblock-help-center-en/cyberpi/bluetooth-compatibility
https://www.yuque.com/makeblock-help-center-en/cyberpi/bluetooth-compatibility

makeblock
education

3. Trying out
(25 min)

Step 3: Trying out

You have all the knowledge and skills to use the mBot2 in any situation. Now you are going to
work with the ecosystem of a little mouse. A mouse lives in nature where it must look for food
and water. There are also many dangers, such as predators who feed on mice.

In this assignment, you will program the mBot2 to act as a little mouse that searches for food
and flees from predators.

Find a picture of a flying eagle and some corn. The corn is the food of the little mouse. The
eagle is the hunter. You can print these images or use your smartphone to display them to the
webcam. You can also hand-draw pictures for food and predator if you like. Just use the same
method you decided for 'teaching’ them to your algorithm using the Machine Learning
extension and for testing the program.

Program the mBot2 so that if you show the corn to the camera, the mBot2 will move forward
(if you use the cable, make a small movement), but if you show the image of the eagle, it
moves backwards.

You can also add more code: if the little mouse sees the food, it says "yummy" and when it
sees the eagle, we can hear its heartbeat.

When creating the computer program for this assignment, it is helpful to use the following

step-by-step plan.

Explanation

Step 1: What do you want to do? e What do you want to program?

Step 2: What do you need? e What do you need in addition to the mBot2?
Step 3: What code blocks do you e How are you going to make the mBot2 move?
need? e What code blocks will you use?

e Make a brief description on how your program
works (pseudocode/natural language, flowchart
or UML)

e |If you need further explanation, you can discuss
with your fellow students, the teacher, or do a
research on the topic. There is help available for

every coding block in mBlock as well.

Step 4: Testing and e First version ready? Test it! During the testing

implementation round, write down points of improvement

e Work on the improvement points until the mBot2
does exactly what you had in mind

e Successful? Film the end result and ask your
teacher if you can post it on social media with the

hashtag #mbot2

Step 4: Wrap-up

Were you able to recreate the mouse ecosystem?

In this lesson, you learned about Machine Learning and how to apply it. You also know how to
use a communication (and why preferably wireless) between a sprite and the mBot2, and to
make use of it to exchange data between the two. In addition, you have made various
technical features of the mBot2 work together.

It is now time for a brief reflection. Think on your own and discuss with the group:

© education.makeblock.com 121

What do you think turned out well?

What could be even better?

Which parts of the lesson did you find easy and which did you find more difficult?
What would you like more explanation about?

Who could help you with that?

