
01

Your First Robot

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 1 Your First Robot

Overview

15 mins

Introduce the lesson by asking

questions or telling interesting

stories.

- 10 mins

Introduce the content

and learning objectives

of this lesson.

- 5 mins

Inquiry

35 mins

Open software

tool mBlock 5

and give

instructions.

- 5 mins
Interface

introduction

- 10 mins

Graphical

programming

- 10 mins

Add

hardware

device

- 5 mins

Connect device

and upgrade

firmware

- 5 mins

Programming

40 mins

Activity

25 mins

Demonstrate

the first

program to the

students.

- 10 mins

Students try on

their own.

- 5 mins

Announce the

challenge and

let the students

discuss in

groups.

- 10 mins

Students

complete the

challenge and

discover more

possibilities.

- 15 mins

Explain the

rules of the

game.

- 3 mins

Arranging the

site and

determining

the team

members.

- 5 mins

Start the game.

- 12 mins

Summary and

clean up.

- 5 mins

Reflection

5 mins

Overview

In this lesson, students will learn

about the features and basic

operations of the mBlock

programming software. Students in

teams need to complete the

assembly of their first mBot and learn

how to program it. When ready,

students will participate in a fierce

competition with their mBots. During

the competition, students not only

need to master the operation of

mBot, but also soft skills such as job

assignment, teamwork, game

strategy, and communication.

Objectives

I can successfully complete the

assembly of my first robot and ensure

that the components are securely

mounted.

I can identify the name of the

parts inside the kit and

understand how to use it.

I can use the basic tools and

understand the dimensions of all

the fastening parts.

 I can successfully install

mBlock 5 software and build a

programming environment for

mBot.

I can locate and identify various

functionalities in the mBlock5

software interface.

I can use a various ways to

establish connection between the

mBot and computer.

I can complete my first program

to control the robot.

 I can creatively complete the

construction of basic functional

structure as needed.

Inquiry

What is mBlock 5？

Please visit：

http://www.mblock.cc/software/mbl

ock/mblock5/

mBlock 5 is a programming
tool for STEAM education. It

is inspired by Scratch 3.0 and
supports graphical and text

programming.

With mBlock 5, children are able to
create engaging stories, games and
animations, and program hardware
like Makeblock robots, Arduino and

micro:bit. It supports Python
programming as well. You can just
switch to Python mode with one-

click. Moreover, its AI and IoT
features give children a chance to
have fun with some cutting-edge

technologies. Besides, mBlock 5
allows you to sync programs across

platforms between Web, mobile
devices and PC.

Introduction

1.Download and install mBlock 5

Stage Area: You can present your

designs, connect devices, set your

sprites and backgrounds here.

Blocks Area: You can find the blocks

you need by category and color in

Blocks area.

Scripts Area: You can program in the

Scripts area by dragging blocks to

this area.

Menu: In this area, you can change

the language, open and save files, go

to Example Programs and Help.

2. Interface introduction

Menu

Stage Area

Blocks Area

Scripts Area

3. Graphical programming

Select the blocks you need from the

Blocks area. Left click the block and

hold it. Drag the block to the Script

area and drop it.

The blocks of different colors and

shapes can be connected with each

other.

Click the block and you can observe the

effects directly in the Stage area or on

the hardware.

4. Add hardware device

Open mBlock 5 and click the plus

button under the Device category

In the Hardware Library, select the

Device you need and click Confirm.

Go back to the homepage. Look, the

new hardware mBot is here. You can

continue to add other devices.

5. Connect Devices and upgrade

firmwarePower on your hardware device and connect

it to the computer via a USB cable or a

Bluetooth dongle.

Connect your hardware to the

computer via a USB cable.

A. Use a USB cable to connect your device

Under the Devices category, select the

hardware device you want to connect

and click Connect.

Click Connection. If your computer supports

Bluetooth and your hardware

device has a Bluetooth module,

you can control or program your

robot wirelessly.

First, plug the Bluetooth dongle

into the USB interface and you will

find the dongle flashes blue light.

Make sure the device is powered

on and placed near the dongle. At

this time, the dongle will stop

flashing and turn solid blue.

Next, follow steps 2, 3, and 4 in

Use a USB cable to connect your

device

B. Connect via a Bluetooth dongle

Note: COM 4 is the serial port number and

it might be different on another system or

PC. On Mac it would be like 1410 or

14230. You can just click Connection.

Return to the homepage. If it shows

Device Connected, then it means that

the device has been connected to the

computer.

Note: Before you start to control the device

with mBlock 5, a window might pop up to

tell you to Update Firmware. You can just

click Update Now. It will take you 2-3

minutes. Then click OK, and the firmware is

upgraded now.

C. Connect via computer Bluetooth

If your computer supports Bluetooth

and your hardware device has a

Bluetooth module. You can control your

robot wirelessly.

Attention: Program upload is not

supported via Bluetooth connection.

Programming

Bluetooth connection between the

mBot and computer is

recommended for larger classes.

With wired connection, any program

related to the movement of the mBot

may cause the wire to tangle as the

program runs immediately after

upload.

Can the student control the

movement of the mBot using the

four arrow keys?

The first program

When the “up arrow” on the keyboard

is pressed, the mBot will move forward

at 100% speed, and it will stop when

the up arrow released.

Activity

Activity A - Soccer Game

Time: 3 mins per round

Establish a border ring by drawing

or using tape. Player aims to push

the other mBots out of the circle

using his or her own. The last mBot

inside the circle wins the game.

Prepare a “soccer field” using any

material you could find in the

classroom.

Activity B - Sumo

Time: 3 mins per round

Activity C - Maze

Time: 3 mins per round

Players control the mBot to go

from the entrance to the exist as

quickly as possible. The player who

finishes the maze in least amount

of time wins the game.

Reflection

How did you feel when
you finished

assembling your first
mBot and writing its

first program?

What do you need to
do in order to upload
your program to the

mBot? Why is
upgrading the

firmware necessary?

What kinds of
structural

improvements could
you apply to the mBot
for better performance
during the activities?

02

Makeblock Sensors

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 2 Makeblock Sensors

Overview

20 mins

Introduce the lesson by

asking the question：What

are sensors?

- 5 mins

Introduce some

common sensors and

electronics

- 10 mins

Sensor Usage

25 mins

Programming

50 mins

Key

Programming

Topics

25 mins

Introduce the Programming Examples of Buzzer\

LEDs\ Light Sensor\ Ultra-sonic Sensor.

- 40 mins

Students review knowledge and ask

questions.

- 10 mins

Open mBlock5

and Introduce

some

commonly

used blocks.

- 10 mins

Wait Blocks

and Wait Until

Blocks

- 5 mins

Forever Blocks

and Repeat

Until Blocks

- 5 mins

If-then Blocks

and If-else

Blocks

- 5 mins

Reflection

5 mins

Introduce the function

of sensors on mCore.

- 5 mins

Introduce I/O System to students by

example.

- 15 mins

How to use a Makeblock sensor

with the mBot?

- 10 mins

Overview

In this lesson, we will cover several

electronics and sensors that are

either integrated with the mCore or

come with the competition

package. This includes – onboard

buzzer, onboard LEDs, onboard

light sensor, and ultra-sonic sensor.

Objectives

Sensors are specialized

electronics that detect

and/or respond to various

environmental properties

such as light, sound,

temperature, humidity,

color, and so forth.

The most commonly seen sensors

and electronics used in level one

competitions are line followers,

color sensors, buzzers, mp3

modules, Bluetooth modules, LED

boards, LED lights, ultra-sonic

sensors, and servos.

What are sensors?

Common sensors

and electronics

Why sensors?

Just like humans use their five major senses

to gather information about the

surroundings and the world in order to

explore, navigate and make logical and

productive decisions,

sensors provide

machineries with useful

data for processing and

in turn become smarter

and more capable devices.

Sensor Usage

Using a Makeblock sensor with the mBot

is a straight forwards process which

follows a simple color-coded rule – any

sensor could be used with any RJ25 port

on the mCore as long as the port and the

sensor has a pair of matching color

stickers.

Before using a sensor, it is
essential to first understand its I/O

system, namely its inputs and
outputs. The input refers to what

the sensor is designed to sense or
detect. And the output refers to

how the gathered information or
data is represented in

programming environments or
presented to the real world.

Finally, it is up to the
programmers to decide how to

utilize this information in
programs to better accomplish

various tasks. Some sensors,
however, require a few extra steps
for setup. This will be covered in a

sensor specific context.

I/O System

Inputs and Outputs

How to ues a Makeblock

sensor with the mBot?

Programming

2. Play a song of lullaby Buzzer

Input

Buzzers are not sensors,

therefore do not detect

or respond to any

environmental

properties. However,

they do respond to

electronic signals sent by

programming

instructions.

Output
Buzz at a specified

frequency for a specified

amount of time.

Programming Example

1. Buzz at 700Hz for 1 second

with x&y coordinate

2. Set left LED to red and right

LED to green

Buzzer

Input

There are two LED bulbs on the

mCore. Since they are not

sensors, they do not detect or

 respond to any

environmental

properties. However,

they do respond to electronic

signals sent by programming

instructions.

Output

Each LED lights up in the

specified color

represented in either

RGB values

or built-in color profiles

for either a specified

amount of time or

forever.

Programming Example

1. Set both LEDs to red forever

3. Ambulance effect

2. 50% power when light

intensity larger than 300

otherwise 100% power

Light Sensor

Input

Light sensors detect the

intensity of the ambient

light. It is important to

note that onboard LEDs

may affect the values

detected by the

onboard light sensor.

Output

The onboard light

sensor returns a non-

negative integer

representing the

intensity of the ambient

light. A higher value

corresponds to a

brighter environment

while a lower value

corresponds to a darker

environment.

Programming Example

1. 50% power when light

intensity larger than 300

3. 100% power when light

intensity larger than 500, 50%

power when light intensity

between 300 and 500, and 25%

power when light intensity less

than 100

Ultra-sonic Sensor

Input

Ultra-sonic sensors

broadcast directional

high frequency sound

waves and detect their

reflection timing.

Output

The sensors return a

non-negative number

representing the

distance to the closet

object in centimeters.

Programming Example

1. Move forward at 50% power or

stop whenever an obstacle is within

15cm perimeter

2. Automatic obstacle avoidance

Key Programming Topic

mBlock5 uses block stacking to

help students develop

essential skills for procedural

programming. One of the

most important concepts

students should undertstand is

the execution flow.

Open mBlock5

 —— Let’s start!

mBlock programs are executed in

a top-down manner where each

block is precisely executed for the

specified amount of time or until

a specified condition is met

before the next block is executed.

Procedural programming and

execution flow

Waits

Wait blocks are the simplest and

easiest to understand form of control

blocks. Wait blocks, as their name

suggest, halts the execution of the

program for the specified number of

seconds. It is important to note that

wait blocks do not halt the program,

but the execution flow of the

program.

Any block that comes before the

wait block, if there is one, still

maintains its effect.

Instead of specifying the number

of seconds, wait until blocks let

users specify the condition that

must be met before the execution

halt is lifted.

It is important for students to realize

loops introduce a new shape to the

execution flow. Before loops, the

execution flows straight from top to

bottom while loops can force the

execution flow to go in a circular

motion.

Loops are major building blocks for

more complex programs. Loops help

programmers avoid repeating code and

achieve task automation. Forever loop

is one of the most common loops used

by programmers. As its name suggests,

forever loops have no end condition

and therefore all the blocks residing

inside forever loop are executed one

round after another. Due to the nature

of forever loops, only one forever loop

can appear in a program.

Repeat until blocks could be

understood as a forever loop with an

escape condition. Repeat until blocks

behave just like forever blocks before

the specified condition is met.

Loops

If statements

Just like loops, if statements are

essential to complex programs. If

statements allow programs to behave

differently under various

circumstances. The simplest and

easiest to understand form of if

statements is the if-then block. If-then

blocks usually present no challenge for

the students to understand since it

appears in natural language all the

time.

Although if-else statements do not

present any more logical challenge for

students, the syntax and bracketing

sometimes confuse students.

The real challenge lies with nested if

statements. Combined with operators,

they require meticulous planning and

ordering to avoid bugs and errors.

The operators’ category consists mostly

common mathematical symbols and logics

such as comparing numbers, calculations,

random number generation, and logic gates.

Operators

Reflection

What are sensors?

What is input？What is
output？

How to use block
stacking for procedural
programming?

03

Me LED Matrix

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 3 Me LED Matrix

Overview

15 mins

Inquiry

30 mins

Programming

55 mins

Key

Programming

Topics

15 mins

Show the mBlock Programming function list to

students.

- 10 mins

Explain the event executive

examples to students.

- 45 mins

Introduce

variable and

explain how to

make it in

mBlock 5.

- 5 mins

Introduce “Set

() to ()” and

“Change () by

()” Blocks.

- 5 mins

Introduce axis.

- 5 mins

Reflection

5 mins

Introduce the lesson by asking

questions or telling interesting

stories.

- 10 mins

Introduce the content

and learning objectives

of this lesson.

- 5 mins

Module instruction

- 15 mins

Connection Method:

how to use a Me LED

Matrix with the mBot?

- 5 mins

Students draw their own plans

for using the Me LED Matrix

and discuss with other

students.

- 10 mins

Overview

In this lesson, students can not only

understand the basic parameters

and usage characteristics of the Me

LED Matrix, but also learn how to

program the LED matrix to display

the output values of other sensors.

In the end, under the guidance of

the instructor, combined with the

knowledge of 2D coordinate

system, students will attempt the

ultimate task of this lesson.

Objectives

I can understand the basic

parameters of the Me LED

Matrix and its functional

characteristics.

I can understand the different

functionalities of the blocks

related to the Me LED Matrix.

I can program the LED

Matrix to display numbers,

texts, or symbols.

 I can gradually master the

programming control skills of

Me LED Matrix through step-

by-step learning and

continuous experimentation.

Inquiry

Module Instruction

Connecting with RJ25

Since the port of LED Matrix (8 x 16)

has a blue sticker, you need to

connect it to a port with blue sticker

on the mCore using a RJ25 cable.

The Me LED Matrix (8 x 16)
contains a total of 128 blue

LEDs.

The LED Matrix could be
programmed to display numbers,

texts, and symbols. The blue sticker
on the connection port indicates

the LED Matrix could only be
connected to a port with blue

sticker on the main board.

Connection Method

Application

The LED Matrix is a great tool for

outputting information. It could

either be used to inspire students

with creative projects by displaying

text, patterns, and symbols or

showing sensor outputs that are

otherwise difficult to obtain or

visualize.

Programming

It's usually very useful to have a

display to show various information

of the robot. However, actual

displays are often more difficult to

program and consumes a lot more

energy than the LED Matrix. Despite

its very limited resolution and

feature, young students can easily

get used to its controls and put their

creativity at work.

1.Display customized images for 1

sec and off

2.Display customized images

3.Display customized images with x&y

coordinate

4. Display string/characters

5. Display string/characters with x&y

6. Display numbers

7. Display the time

8. Screen clearing function

mBlock Programming

function list

The Change () by () block is a

Variables block and a Stack block.

The block will change the specified

variable by a given amount. Along

with a 'wait' block, the numbers can

be displayed on the LED Matrix in a

controlled manner.

What is the difference between

the effects of executing the two

blocks below?

Students can drag out the following

two blocks, double click on them and

observe their different effects.

Do the following two pieces of

code have the same effect on the

LED Matrix?

Decomposing a single complex

block into multiple simpler blocks

is a good practice for more

complex exercises in the future.

How could the on-board button

be used to switch patterns being

displayed on the LED Matrix?

Use the "if...then...else" conditional

statement to switch between two

custom patterns.

How do you write a program to

display incrementing numbers on

the LED Matrix?

What is the xy coordinate system?

Is there a way to achieve the

same effect of displaying

incremental numbers

manually using the on-board

button?

Students can try to use other

methods to achieve the same

functionality as the sample program.

In the process, they can constantly

expand the understanding of the

basic programming logic.

How to use the Me LED Matrix to

monitor the sensor outputs？

Being able to display sensor

readings on the LED Matrix is

essential to understanding certain

program behaviors during execution

so that fixing the program becomes

an easier task.

How can I make the pattern

displayed on the LED Matrix

move?

What is the orientation of the xy

coordinate system on the LED Matrix?
How to display moving text on

the Me LED Matrix？

Determine the movement effect of

the text on the Me LED Matrix, and

use the image movement method

you learned before to try to

complete the moving text.

How to calculate the number of

steps the image has moved on the

LED Matrix?

Key Programming Topic

A variable is a changeable value

recorded in mBlock 5 memory.

Variable

Variables are created with

the button in the Variables

palette.

Variables can only hold one

value at a time, unlike lists.

These values can be either

numbers or strings — any text.

A small bubble showing the

current value of the variable

will appear when the variable is

clicked on. Unlike many other

programming languages,

variables must be created prior

to when the project actually

runs. This only results in a

small amount of RAM being

used to store the value for use

when the project actually runs.

The Set () to () block is a Variables

block and a Stack block. The block

will set the specified variable to the

given value: a number.

Axis

Coordinate graphing sounds very

dramatic but it is actually just a

visual method for showing

relationships between numbers.

The relationships are shown on a

coordinate grid. A coordinate grid

has two perpendicular lines, or

axes, labeled like number lines.

The horizontal axis is called the x-

axis. The vertical axis is called the

y-axis. The point where the x-axis

and y-axis intersect is called the

origin.

The Change () by () block is a

Variables block and a Stack block.

The block will change the specified

variable by a given amount.

Set () to ()

Change () by ()

Reflection

What information can
be displayed on the

Me LED Matrix?

What is the xy
coordinate system?
How are the axes on
the Me LED Matrix

oriented?

How to display sensor
output on the LED

Matrix?

04

RGB Line Follower

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 4 RGB Line Follower

Overview

15 mins

Inquiry

30 mins

Programming

55 mins

Key

Programming

Topics

15 mins

Before programming，let the students download

the RGB line follower extension from the extension

center.

- 5 mins

Explain the programming examples

to students.

- 45 mins

Give an example of what is

binary number and find out

the difference between

binary and decimal.

- 5 mins

Discover nested if statements from

practical applications and

summarize its complicated use.

- 10 mins

Reflection

5 mins

Introduce the lesson by asking

questions or telling interesting

stories.

- 10 mins

Show the content and

learning objectives of

this lesson.

- 5 mins

Hardware

introduction

- 10 mins

Connection

method: How

to use an RGB

line follower

with the

mBot?

- 5 mins

Explain the concept

of the fill lights

separately by

asking questions:

Can we switch the

fill lights on the

RGB line follower to

green, red, or blue?

- 10 mins

Learning

method: how

dose the

learning

method work?

- 5 mins

Overview

Line following is the heart of level

one automatic stage. Being able to

reliably follow tracks on the map is a

prerequisite for getting to desired

locations and completing the

required missions. RGB line follower

is a powerful sensor that can provide

contestants with reliable and

customizable information regarding

the map, which can in turned be

used for completing various tasks.

Objectives

Students can properly use

the RGB line follower to

learn the track and

background color.

Students can properly read the

RGB line follower status

Students can use motor

differential speed to follow

a track

Students can use sensor

status to program a basic

line following logic.

Inquiry

Hardware

To learn the background color,
place your mBot so that all four

sensors are seeing the background
color and press the small white

onboard button once. The indicator
lights will start flashing indicating
the learning has begun. Once the

learning is complete, the lights will
stop flashing. To learn the track

color, simply have all four sensors
on the track and double click the

button.

RGB line followers carry four
independent sensors that are capable
of learning and memorizing the color

of the track and the color of the
background.

◼ Along with the four sensors are four fill

lights that could be set to red, green, or

blue. It is up to the contestants to

decide which color of fill light is most

fitting for the map and helps gather the

most reliable stream of data. To change

the color of the fill lights, simply press

and hold the button for approximately

two seconds.

◼ Once the background and track colors

have been learnt and have been set,

each of the four indicator lights

indicates the status of each of the four

sensors. An indicator that is on

suggests the corresponding sensor

sees the background.

Unlike mBlock3, mBlock5

requires students to first initialize

the RGB line followers connected

to the mBot. Since the mCore

supports a maximum number of

four-line followers being

connected at the same time,

each line follower is, after

initialization, referred to as line

follower 1, 2, 3, and 4 without

having to specify the ports.

A new feature is that students can

now set the fill light color through

software. The biggest advantage this

brings is the ability to change the fill

light color during program execution

so that the mBot could better adapt

to various map features.

The other related blocks include

retrieving or asking questions about

the status of each sensor, setting

sensitivity, and retrieving the motor

differential speed. These blocks will

be covered in programming

examples.

It is important to note that RGB line

follower blocks are only available in

upload mode.

And an indicator that is off suggests

the sensor sees the track. When

reading the status of the line

follower, an on indicator reads as a

‘1’ and an off indicator reads as a ‘0’.

Since the first sensor resides on the

rightmost side of the line follower,

the proper way of reading the line

follower status goes from right to

left. For instance, the following status

reads as ‘1011’

Software

Before using RGB line followers in

mBlock 5, students must first download

the RGB line follower extension from

the extension center.

Programming Control

This method is relatively easy to set

up and use without the need to

understand its working principles.

However, since its working principle

is not apparent, the degree of

control and customization is limited.

Students mostly rely on trial and

error to figure out the optimal

parameter values.

Compared to the first method, this

method requires students to be

comfortable working with sensor

status, if statements, and sometimes

loops. Since this method does not

rely on any hidden logic, students

have a much higher degree of

control and easier time of

debugging.

The first step to building your own

line following logic is establishing a

clear goal and figuring out what

information from the line follower can

help you achieve that goal. Assuming

the goal is to make the mBot go

forward whenever it is straight on the

track or stop otherwise, the real

challenge is deciding what counts as

being straight on the track.

For the purpose of this example, the

line follower status, when the mBot is

straight on the line reads as ‘1001’

hence the program below.

First is by using the built-in

motor differential speed and

turning sensitivity.

There are mainly two ways
of following a track using

the RGB line follower.

The second method is to custom

build your own line following

logic using sensor outputs.

Now comes the question - how

should one logically combine the

three conditions above and have

their mBot automatically follow a

simple track? Ask students to test

and compare the following two

programs. Do they both work?

Which one is more elegant? And

what is redundant about the other

one?
After some testing, it comes naturally

that the next step is to make the

mBot turn with the track. For this

objective, the key is to decide the

conditions under which the mBot

goes left or right. Assuming the mBot

starts straight on the track, the very

first status indicating it’s going off

track is either ‘1101’ or ‘1011’. ‘1101’

Indicates the mBot is off to the right.

And to go back on track it should

turn left and vice versa.

Key Programming Topic

In mathematics and digital

electronics, a binary number is a

number expressed in the base-2

numeral system or binary numeral

system, which uses only two symbols:

typically "0" and "1".

Binary Number

"0" & "1"

Binary numbers are important because

of its straightforward implementation

in digital electronic circuitry using logic

gates. The binary system is used by

almost all modern computers and

computer-based devices including

RGB line followers to represent their

sensor status.

Decimal counting uses the ten symbols

0 through 9. Counting begins with the

incremental substitution of the least

significant digit (rightmost digit) which

is often called the first digit. When the

available symbols for this position are

exhausted, the least significant digit is

reset to 0, and the next digit of higher

significance (one position to the left) is

incremented (overflow), and

incremental substitution of the low-

order digit resumes.

Decimal increment

Binary increment

Rightmost digit is reset to zero, and the

digit to its left is incremented.

Binary counting follows the

same procedure, except that

only the two symbols 0 and 1

are available. Thus, after a

digit reaches 1 in binary, an

increment resets it to 0 but

also causes an increment of

the next digit to the left:

0000 → 0001
rightmost digit starts over, and next digit

is incremented.

But being a strict mother, she later

adds that if he doesn’t get a perfect

score on math exam, he must get a

perfect score on his English exam

otherwise he gets grounded for a

week. What would the if statement

look like now?

0010 → 0011
rightmost two digits start over, and next digit is incremented.

0100, 0101, 0110, 0111
rightmost three digits start over, and the next digit is

incremented.

An observant student would soon

realize that the maximum number of

status a binary number can represent is

equal to two to the power of the

number of digits.

For instance, RGB line follower uses a

four-digit binary number which can

represent a total of 24 = 16 states.

Nested If Statements

It is not unusual for students to get

intimated or confused by the syntax

or the concept of nesting a few if

statements together. Imagine the

following scenario – Tony’s mother

tells him the only way he can play

games is to get full score on his

math exam. Translated to a simple if

statement, this becomes——

IF
THEN

If (Tony gets full score on math exam)

Then

(Tony plays games)

If (Tony gets full score on math exam)

Then

(Tony plays games)

Else

 If (Tony gets full score on English

exam) Then

(Tony is not grounded)

Else

(Tony is grounded for a week)

To summarize, nested if statements, in general,

follow the following template:

If (CONDITION #1) Then
 DO THIS
Else / CONDITION #1 is not met

If (CONDITION #2) Then
 DO THIS
Else / Neither CONDITION #1 nor #2 is met

If (CONDITION #3) Then
 DO THIS
Else / None of the conditions above is met

Do THIS

It is important to note that
more than often nested if statements

contain implicit ordering logic. Going back

to Tony’s example, does the program still do

what his mother intends to do if condition

#1 and #2 switch places?

Reflection

What’s most confusing
about nested if
statements to you?

In what cases do the
RGB indicator lights
turn on and off?

How many track states
can the RGB line
follower recognize?

05

Color Sensor

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 5 Color Sensor

Overview

15 mins

Inquiry

25 mins

Programming

60 mins

Key

Programming

Topics

15 mins

Combine the knowledge of RGB to

demonstrate the difference between high-

level and low-level colors in mBlock 5.

- 5 mins

Students go back to the

programming example to identify

and solve problems.

- 10 mins

Reflection

5 mins

Introduce the lesson by asking questions：Is

the world in the eyes of mBots colorful? Do

you think they can recognize colors?

- 10 mins

Show the content and

learning objectives of

this lesson.

- 5 mins

Hardware

introduction

- 10 mins

Connection

Method: How

to use a color

sensor with

the mBot?

- 5 mins

Two different pictures to

comparing and guide the

students to think about

which field of view looks

like a mBot with the color

sensor ？

- 10 mins

Before to program，

let the students to

download the color

sensor extension from

the extension center.

- 5 mins

Challenge for

students.

- 10 mins

Set LED fill lights

and explain the

event executive

examples to

students.

- 45 mins

Overview

The color sensor is involved in many

different missions in level one

competitions. From simply

successfully detecting certain colored

cards on the map to using the

information of colored cards on the

map to perform various maneuvers,

knowing how to properly use the

color sensor is essential to level one

competitions.

Objectives

Students can retrieve the

output of a color sensor

using LED board.

Students can use a color

sensor in conjunction with

onboard LED lights.

Students can detect a

standard color using a

color sensor.

Students can detect a non-

standard color using a color

sensor.

Students can properly

utilize RGB information to

achieve multi-color

separation.

Inquiry

Hardware

Since objects of different colors
reflect light of different colors,
students could use the output

information to differentiate various
colors.

The Me color sensor contains two
digital color sensors and two LED fill

lights and takes reflection light as
input. The color sensor analyzes the

light input and outs the RGB values of
the light.

◼ It is worth mentioning that the

color sensor reading is greatly

affected by shadows or the

general lighting condition. It is

generally accepted that the

optimal distance the color sensor

should be from the object of

interest is a little bit less than 1

centimeter. It is also important to

note that the sensor has a delay

around 0.2 seconds.

Programming Control

When developing a program that

utilizes the color sensor, it would be

helpful to be able to see what the

color sensor is reading. To do this,

students could have the LED board

display the output of the color

sensor in real time. Look at the

following program and think about

why is the forever block necessary?

Before using the color sensor
in mBlock 5, students must

first download the color
sensor extension from the

extension center.

Programming Examples In mBlock 5, a new block to set LED fill

lights either on or off is provided. Since

the color is extremely sensitive to lighting

condition, setting the fill lights on and off

causes the color sensor to produce vastly

different outputs.

It is up to the students to decide which

option helps provide the most useful and

reliable stream of output. It should be

noted that the availability of this new block

opens the possibility of dynamically

turning the fill light on and off during

program execution. If not explicitly

specified, the default is having the fill lights

on. All color sensor blocks must be used in

upload mode.

Using the ‘color sensor detects’

block, students can easily make their

mBots perform certain maneuvers

when the color sensor has detected

certain colors. In the following

example, the mBot simply stops

when the color red is detected.

Another useful skill which is sometimes necessary in level one competitions is to set the

onboard LED lights to whatever color the color sensor is sensing. This program could also be

used to visually evaluate how accurately the color sensor is detecting the colors. Students

can achieve this in two ways, with or without using variables.

The ‘color sensor detects’ block allows

students to ask whether the color sensor

is seeing a certain color that matches

one of the six built-in color profiles

which include white, red, yellow, green,

blue, and black. These color profiles are

nothing magical but sets of pre-defined

RGB values or ranges of RGB values that

are built-in by the developers of the

color sensor extension. Using the ‘color

sensor detects’ block, students can easily

make their mBots perform certain

maneuvers when the color sensor has

detected certain colors.

Since the built-in color profiles are limited to only six

colors and the pre-defined RGB values might not suit the

lighting condition of a given usage scenario, students

may want to define their own color profiles. To do so,

students could use the R/G/B value blocks in conjunction

with if statements. Suppose the color of interest has the

RGB values of (83, 124, 226), what would the program

look like in order to achieve the same mission as the

example above?

Depending on how similar the color of interest is to the

color of other map features and whether it is the only

color of interest, the program above may or may not

work well. The reason is that the range we have defined

contains approximately 90 x 130 x 55 = 643,500

different colors. It is up to the students to decide how

narrowly they want to define the range in order to

reliably complete their missions. Another question for

students to think about is whether there is a way to

simply the program above?

Key Programming Topic

It is an additive color model in which

red, green and blue light are added

together in various ways to

reproduce a broad array of colors.

The name of the model comes from

the initials of the three additive

primary colors, red, green, and blue.

RGB The main purpose of the RGB color

model is for the sensing,

representation and display of

images in electronic systems, such as

televisions and computers.

RGB sub-pixels in an LCD

TV (on the right: an orange

and a blue color; on the

left: a close-up)

RGB phosphor dots in a CRT

monitor

RGB is a device-dependent color

model: different devices detect or

reproduce a given RGB value

differently, since the color elements

and their response to the individual R,

G, and B levels vary from manufacturer

to manufacturer, or even in the same

device over time. Thus an RGB value

does not define the same color across

devices without some kind of color

management.

It is interesting to note that the

maximum number of colors the color

sensor can recognize in mBlock 5 is

approximately

255 x 255 x 255 = 16,581,375.

Execution Flow

Going back to the first programming example, why is the forever block necessary for the

LED screen to display the sensor output in real time? The reason is that without the forever

block, the execution simply flows through the ‘show number’ block once and terminates

since there is no further blocks to be executed. Thus the LED board would only display

the initial sensor output and never update the value again. Despite the simplicity of this

concept, having a solid understanding of the execution flow is crucial to building or

debugging larger, more complex programs.

In mBlock 5, the level of each

primary colors ranges from 0 to

255, where a lower value represents

a lower level of the color and a

higher value representing a higher

level of the color.

Reflection

Does the color sensor
produce the same
output in different
lighting conditions?

What is RGB and what
is it used for?

Can you come up with
two different methods
to stop your mBot at a
certain color?

06

Mp3 Audio Player

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 6 Mp3 Audio Player

Overview

10 mins

Inquiry

25 mins

Programming

75 mins

Key

Programming

Topics

5 mins

Emphasize the usage of wait

until blocks to students.

- 5 mins

Reflection

5 mins

Introduce the lesson by asking questions：as

the sound of the buzzer is really monotonous,

why can't we find a way to change it?

- 5 mins

Show the content and

learning objectives of

this lesson.

- 5 mins

Hardware

introduction

- 10 mins

Connection

Method: how

to use a Me

Audio Player

with the

mBot?

- 5 mins

Students decide

what music to play

and try to download

it.

- 10 mins

Use the mBlock

Programming

function list to

explain

programming

control of Me

Audio Player.

- 10 mins

Challenge

for

students.

- 20 mins

Let students think

and discussion:

What are the

necessary functions

for the buttons of

common audio

devices?

- 5 mins

Show and

explain the

event executive

examples.

- 40 mins

Overview

In this lesson, students will first

focus on mastering the basic

operations of the Me Audio Player.

Then students will have a chance to

explore some creative usage of the

audio player and thereby

deepening their understanding of

this piece of electronic.

Objectives

I can understand the

installation and setup

process of the audio

player.

I can properly process audio

files into the correct format

and store them into the TF

memory as required by the

audio player.

I can come up with creative

ideas utilizing the audio

player hence increasing its

usability.

 Can I extend my

knowledge of common

sensors?

I can enable and realize

basic audio playback

through programming.

Inquiry

Introduction of

the Me Audio Player

An external TF memory card
is required to store audio

files.

Me Audio Player module, compatible
with the entire series of makeBlock
control boards, is able to play back

and record sounds with a built-in
decoder. This module’s connection
port is marked with a white sticker,
meaning that it is controlled by I2C

signals, and must be connected to a
port with white sticker on the main

board.

◼ A non-flashing, blue

on-board LED

indicator suggests

the audio player is in

play back mode,

while a flashing

indicator means it’s

in recording mode.

Usage, Audio storage and

Connection

◼ The module’s metal hole area is the

reference area in contact with the

metal beam;

◼ With reverse polarity protection,

reverse current will not damage the

IC;

◼ Since the Me Audio Player module’s

connection port is marked with a white

sticker, when using the RJ25 port, it

needs to be connected to a port with

white sticker on the main board;

◼ The on-board micro USB connector

could be used to edit files in the TF

memory card. Therefore, a card reader

is not necessary;

◼ The module supports the following audio

file formats: MP3, WMA, and WAV.

1. Choose a port

7. Toggle between a pause and

continue playback

8. Stop playback

9. Volume adjustment by explicit

percentage specification

10. Increase volume by default amount

11. Decrease volume by default amount

12. Record and save the file in name

specified

13. Stop recording

mBlock Programming

2. Playback by specifying file index

3. Playback by specifying file name

4. Specify playback mode

5. Play previous audio file

6. Play next audio file

Programming Control

Although the following

program is simple in

construction, it could be a

powerful debugging tool for

more complex programs.

Especially for checking out

issues with the audio files

themselves.

Students can adjust the 'wait' time

to play back the audio file for the

specified duration.

The on-board button could be

programmed to interrupt

audio playback at any moment.

The effect is the same as

playing back for a non-

specified time frame.

How to play back an audio

file by specifying its

index?

What are some essential
functionalities the button

on the audio player
should be able to realize?

How to control the audio player

to stop playback after a

specified period of time?

How to play back an indexed

audio file indefinitely and

stop at any moment?

Have the students come up with

flow charts and briefly describe

them.

Can you write a program to play

the next audio file without using

'wait' or 'wait until' blocks?

What is the work flow of

recording and then playing the

recorded file? Why is a clear flow

chart crucial to programming?

This sample program is for inspiration

purpose only.

Can students still achieve the

same functionality through

another programming logic?

Challenge：

Is it possible to use only one physical

button to go to either the next or

previous file?

How could sensors such as light

sensor, ultra-sonic sensor, or RGB

line follower be utilized to help

control the audio player?

Which sensor is most suitable for

this task and why?

Pressing the button

Recording

Releasing the button

Stop recording

Playback

Can you make it happen? What

other creative ideas do you have?

Key Programming Topic

The Wait Until () block is a Control

block. The block halts program

execution until the specified Boolean

condition is true.

Wait until

Reflection

What are the
precautions when using
the Me Audio Player?

Is it possible to
implement all the
common features of an
audio player using the
Me Audio Player?

What was the most
challenging parts of
today's lesson for you?
How did you overcome
the difficulty?

07

Bluetooth Controller

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 7 Bluetooth Controller

Overview

10 mins

Inquiry

20 mins

Programming

75 mins

Key

Programming

Topics

5 mins

Reflection

5 mins

Introduce the lesson by asking questions：After

writing the program, the mBot starts running by

itself……Is that all? Do you want to control it?

- 5 mins

Show the content and

learning objectives of

this lesson.

- 5 mins

Use the mBlock Programming

function list to explain

programming control of

Bluetooth Controller. - 10 mins

Challenge for

students.

- 20 mins

Explain the event

executive examples.

- 40 mins

Module Introduction

- 10 mins

Connection Method

- 5 mins

Bluetooth Pairing

- 5 mins

Emphasize the usage of

（）/（）blocks to students.

- 5 mins

In order to make students better use the

Bluetooth Controller, the concept and

usage of the joystick should be proposed.

- 5 mins

Overview

In this lesson, students will learn the

basics of using the Bluetooth

controller. And they will try to

customize each button or joystick to

realize the control of mBot hardware.

Objectives

I can program to use the

Bluetooth controller to

control mBot movement.

 I can use other display

devices to read the return

parameters of the joystick.

I can associate the

displacement of the

joystick with the wheel

motor speed.

 I can use

mathematical operations

to complete accurate

assignments.

 I can understand the

advantages and

disadvantages of precise

numerical and range

definitions in the program.

 I can understand the

layout and features of the

Bluetooth controller.

I can pair and set up the

Bluetooth control to work.

Inquiry

Module Instruction

Bluetooth Controller
features 15 buttons and 2

thumb sticks for a more
flexible Makeblock robot

control.

It can allow you to customize
control operation by defining

each button with a function in an
anti-interferent operation during
robotics competition, within the

transmission distance of 20m.

Connection Method

Bluetooth controller can only be

connected to the Makeblock

robots with a Bluetooth module.

Step 1 - Turn on your robot and

connect it to the computer via

USB cable.

Step 2 - Open mBlock 5 and

select the device as mBot.

Step 3 - Select the currently used

serial port.

Step 4 - Select the device as mBot

and add the extension file.

If multiple serial port options

appear, please select the port

that is newly added after the

robot is connected to the

computer.

Step 5 - Start to program the

controller.

Bluetooth Pairing

Step 1 - Turn on the controller.

The indicator flashes blue.

Step 2 - Get the controller close to

your robot. Press the “Bluetooth

button” until the indicator flashes

more frequently, then release the

button, and the controller will

connect to your robot automatically.

Programming

Joystick RX, RY, LX and LY control

mBlock Programming

 function list

How do we program to control

the mBot movement via a

Bluetooth controller?

Buttons of controller control

How to switch the color of the

onboard LEDs by using the

buttons on the Bluetooth

controller?

Usually we use this program to

test whether the Bluetooth

remote control is connected to

the motherboard. Therefore,

students are advised to add this

program to the list of basic

programs for troubleshooting

hardware and software.

When working on the LED color

control program, we usually

add the following script block

before the loop. Students can

consider why they need to join

this block?

According to the above LED

programming control learning, we

can use the "if...then..." condition

to switch the states through the

buttons on the Bluetooth

controller.

So, after the students complete this

sample program, can they control

the mBot to move normally?

If not, can students try to describe

the problem found and try to find a

solution?

This is a plausible ending solution,

students can try to add a "stop

mobile module" in different

locations to solve the problem of

how to stop mBot. But does this

solution bring new problems?

Before using the joystick, the most

important thing is to understand the

returning value on the mBlock 5

software. We can edit the control

program according to the definition

of different values or ranges.

Can students use the onboard LED to

indicate the different states of travel?

Challenge：

e.g.

move forward = green

move backward = blue

turn left = left LED

turn right = right LED

stop = red

Bluetooth control sample

program

Is it possible to use the left and

right motor differential control

modules to change different

turning radii in the left and right

turn control?

How to read the XY axis value of

the joystick on the Bluetooth

controller?

Students can upload this

program and draw a

schematic diagram of the XY

axis, marking the highest

value of the two ends of LX,

LY, RX, RY and the value or

value range after the joystick

is homed

How to program to use the

joystick on the Bluetooth

controller to control the

movement of mBot?

When the joystick leaves the home

position, how does the remote control

determine the direction in which it is

pushed?

How do we program to

change the movement speed

of the mBot with the

displacement of the joystick?

When the joystick leaves the home

position, how does the remote control

determine the direction in which it is

pushed?

Why do we need to add the

mathematics of "divide by 2.55" to the

program?

Why do we use greater or less than

positive or negative 10 instead of 0 in

our program?

How do we combine the

Bluetooth controller controlled

motor movement program

with other sensors or actuator

control programs?

Students can perform creative

extension programming based

on this sample program. You can

also try to adjust the parameters

in the program to feel the

changes in the control program.

Key Programming Topic

A joystick is an input device

consisting of a stick that pivots on

a base and reports its angle or

direction to the device it is

controlling. A popular variation of

the joystick used is the analog

stick. We can push the joystick to

all directions or push it down as a

button.

Joystick

The () / () block is an Operators

block and a Reporter block. The

block divides the second value

from the first and returns the

result. If the first value is not

evenly divisible by the second, the

reported value will have decimals.

The numbers can be typed directly

into the block, or Reporter blocks

can be used instead.

This block can be stacked inside

itself — this can be used to fit

more numbers in.

（）/（）Block

Reflection

How can we use the
Bluetooth controller to

control the mBot's
motors and actuators?

How to read the
analog value of the

joystick？Why do we
have to read the
joystick returning

value？

How does the
differential control of
the wheel motor and

the speed control
through the joystick
displacement help in

the process of
completing the task?

08

9g Servo

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 8 9g Servo

Overview

15 mins

Inquiry

30 mins

Programming

60 mins

Key

Programming

Topics

10 mins

Reflection

5 mins

Lesson introduction and objectives

announcement

- 15 mins

Programing

preparation

to add the

extension of

servo in the

software

- 5 mins

Challenge

inquiry

- 12 mins

Programming-Basic

program to control

the 9g servo in

mBlock 5

- 3 mins

Program

comparation

and analysis

- 40 mins

Introduction of the

working principle of a

servo

- 10 mins

Servo wiring and

application

- 10 mins

Servo hardware

preparation-holder

and arms

- 10 mins

Key Programming topics- button debounce and repeat

until

- 10 mins

Overview

In this lesson, students start with the

most basic how to properly install the

servo and its accessories, and through

the step-by-step procedure, finally edit

the more complicated program that

uses the Bluetooth controller to control

it. And in this lesson, there is more

hardware knowledge, and students can

understand that in robot control, the

understanding of hardware

characteristics is also very important.

Objectives

I can understand the

design parameters and

basic usage of MakeX 9g

servos.

 I can learn how to

complete the connection of

the servo through the RJ25

adapter to the mCore

motherboard.

I can learn how to use the

servo correctly and limit it

in the program according

to its environment.

 I can use the

Bluetooth controller to

switch the steering angle

and speed change

control.

I can understand the

concept of "debounce" in

hardware control

programs.

Inquiry

Module Instruction

A servo motor allows a precise control
of the angular position, velocity, and

acceleration. It’s like you’re at the
steering wheel of your car. You control
precisely the speed of the car and the

direction.

MakeX 9g Micro Servo

◼ MakeX 9g Micro Servo Pack is a servo

pack for participants who need to

make a rotating device , it contains a

9g servo, a servo hub, a servo bracket

and hardwares.

◼ The MakeX 9g Micro Servo can rotate

approximately 180 degrees, it works

like standard servos but of course not

as strong as a standard servo.
This very strict control of the angular

position, velocity, and acceleration
can’t be done without a sensor for

position feedback. This sensor
sounds the alarm when the motor is

spinning. But even so, there is
something more sophisticated that
controls all the stages of the servo

motor. It’s a dedicated controller
that makes the tiny things inside the

servo to move with military
precision.

Connection Method

With the servo hub and servo bracket,

it may be convenient to connect the

servo with other Makeblock parts. A

Me RJ25 Adapter also help you to

connect the servo with mCore easily.

Application

These motors are classified into

different types based on their

application like Brushless DC , AC ,

continuous rotation, linear and

positional rotation, etc. Typical

servo motors contain of three wires

such as, power control and ground.

The outline and dimension of these

motors depend on their

applications.

An exclusive design of this motor is

suggested in controlling

applications like the robotics.

Basically, they are used to change

the speed control at high torques

and correct positioning.

Programming

These servos are essential parts if we

need to control the position of

objects, rotate sensors, move arms

and legs, drive wheels and tracks,

and more.

Set the servo to 90 degree

Before to program the servo,

we have some questions.

Why do we need to use
the servo? And how do

we program to control the
servo in mBlock 5？

Then, you will find the following

block which can be used to

control the 9g servo.

Connect the servo on the RJ25

slot and mCore, set the servo to

90 degree to put on the servo

arms, and we can have a go to

start to program it.

And if you need

to program to

control the servo

in mBLock, the

first thing you

need to do is to

add the

extension.

mBlock Programming function

How to set the servo to the

degree we want?

Check the port on mCore and the slot on

the RJ 25 adapter. Make sure you have

done the upgrade firmware of the mCore,

and then double click on the block to set

the angel of servo.

Debounce

If we need something like a

small robotic device to switch

between two angles, how

should we finish writing this

control program?

Why do you want to add a 0.5

second wait after each angle change

in the second sample program?

What is the difference
between these two

programs?

Can we control the 9g servo to

rotate between 0 and 180 under

the controllable speed

conditions?

Can we program to control the

servo rotate from 0 to 180 degree

by degree?

The 9g servo changes between two

angles according to its own set

speed. We can add variables to

control its rotation speed and the

rotation angle of a single motion.

How can we change the
speed of servo rotation?

What is the fastest speed of
the rotation of 9 g servo?

Can we program to control the

servo to move between two

defined angles using the buttons

of the Bluetooth controller, and

the servo stops moving when the

button is released？

Because of the structural design,

sometimes the space that allows the

servo to rotate can not reach 180

degrees. If the servo is stuck with the

physical structure, it will cause great

damage to the internal gear set and

even the entire servo will burn out.

So the program uses the "and" block to

set the range of the rotation between

45 degrees and 135 degrees.

At the beginning of the program we

set the variable to 0. After the

program starts, because the initial

value of the variable is 0, we enter the

first "repeat until" loop until the

variable equals 180 and jumps out

into the second loop. In the first cycle,

the incremental variable assignment

gives the servo a set angle that has

completed a 0 to 180 degree change.

The second, on the other hand, is that

the angle of the steering gear is

gradually reduced to 180.

How do we use the buttons on

the Bluetooth Controller to

wirelessly control the steering

of the servo between two fixed

angles?

Challenge：

Can the student complete the

switch of the steering angle by

pressing the button on the remote

control on the basis of the sample

program?

Challenge Program

Can we program to correlate the

rotational speed of the servo

with the displacement of the

joystick?

Key Programming Topic

Pushbuttons often generate

spurious open/close transitions

when pressed, due to mechanical

and physical issues: these

transitions may be read as multiple

presses in a very short time fooling

the program. This example

demonstrates how to debounce

an input, which means checking

twice in a short period of time to

make sure the pushbutton is

definitely pressed. Without

debouncing, pressing the button

once may cause unpredictable

results.

Button Debounce

Repeat Until ()

The Repeat Until () block is a

Control block and a C block.

Blocks held inside this block will

loop until the specified boolean

statement is true, in which case

the code beneath the block (if any)

will execute. This loop is in similar

nature to a while loop in some

other programming languages.

Reflection

What is the working
characteristic of the
servo? How to protect
the servo?

How to take into
account the working
environment of the
servo to limit the
operating range of the
steering gear through
the program？

What is the hardest
part of the process you
are studying today?
How did you solve this
part of the problem?

09

Advanced
Programming Techniques

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 9 Advanced Programming Techniques

Overview

25 mins

Case Study

90 mins

Reflection

5 mins

Kick off the class by a mission

which provides a step by step

guidance to students.

- 10 mins

Software and hardware

cognition.

- 5 mins

Mission process

breaking down

and analysis.

- 10 mins

Program test

and

debugging.

- 20 mins

Five steps to

implement

the final

program.

- 30 mins

Problems

sorting and

reflection.

- 30 mins

Mission work reflection and

lesson objectives

introduction.

- 10 mins

Overview

In this lesson students will learn

about several advanced

programming techniques and tools

utilizing the color sensor. These

techniques and tools could be

applied to other aspects of level

one competition, given the

reasonings and logics behind are

well understood. Once mastered,

students could produce much

more efficient, reliable, and elegant

programs that are easier to

understand and reuse.

Objectives

Students can use the color

sensor to count and

memorize the number of

appearances of a certain

color.

Students can use a reliable

technique to prevent

overcounting in the use case

above.

Students can understand

the concept of logic gates.

Students can translate

back and forth between if

statements with logic

gates and if statements

without logic gates.

Case Study

Imagine there is a sequence of

blue and red cards alongside a

track on the map:

Before delving straight into the program,

try decomposing the problem by thinking

the following questions ——

◼ How do you detect a blue card?

◼ How do you keep a count?

◼ When and where do you update the

count?

◼ How do you display a rolling count?

1. Please display a rolling

count of the number of

blue cards on the LED

board

Being able to dissect a

problem into these smaller,

less complex questions is a

crucial skill for programmers.

To detect a card of a certain color,

it is obvious that a color sensor

must be utilized. And according to

the previous lesson on color

sensor, using a simple if statement

with the appropriate color sensor

block can achieve this goal. The

following program stops the mBot

when a blue card is detected by

the color sensor.

Since the count is a potentially

 changing number that must also be

memorized, a variable is perfect for this

job. To brush up, in mBlock5 a variable

is a custom created block that stores

numbers that could be dynamically

referred to and/or changed during the

execution of a program. First, a variable

must a created and given a descriptive

name. In the following example the

variable is named ‘blueCardCount’.

Then, it is good practice to initialize the

variable or in other words, set the

variable to its initial value before the

body of the program is executed.

And regarding the question of

when to update the count, it

should be logically clear that the

count should be updated inside

the if statement after the target

color has been detected. It should

be noted that there are two

methods to update the count,

either by using the ‘change by’

block or by explicitly setting the

count to the current count plus

one. Understanding this equivalent

relationship is a good exercise to

further develop a programmer way

of thinking.

Finally, to bring all the above together,

the mBot must be in motion following

the track.

Assuming there is no termination, the

following program uses a forever loop.

If the concept of execution flow is well

understood, it should be clear that the

line following logic should be placed

inside the forever loop but outside the

if statement, either before or after.

Although displaying a rolling
count sounds relatively trivial,

it is often unlikely for
inexperienced programmers
to get it right the first time.

Moreover, the solution above is still

not complete. If tested, the LED panel

would never display count’s initial

value of zero. Therefore, an

additional LED panel ‘show

number’ block needs to be placed

outside of the if statement.

Most would suggest putting a

LED panel ‘show number’ block

inside the if statement after the

target color has been detected.

However, it is only correct if such

a block comes after updating the

count. Otherwise, the displayed

number will always be off by one.

Depending on how fast the mBot is

moving, any number in the range of

lower tens to higher hundreds is

possible. This type of issue is

categorized as overcounting.

Overcounting happens when the

count variable is being unexpectedly

and unreasonably updated more

than it was supposed to.

In the following section, four

solutions to this issue will be

introduced, each being more

reliable and elegant than the

previous one.

Try to let the mBot run by only one

blue card, see if the LED panel is

displaying the expected count.

Now comes the testing phase！

In the case of the above program, the

only possibility for overcounting to

happen is the if statement’s condition

being satisfied more than expected.

Taking a closer look at the program and

the problem itself, the if condition is met

the moment the color sensor detects

the blue card. And this condition is

continuously being met the entire

duration while the color sensor is on top

the blue card. Since it takes time for the

mBot to move past a single blue card

and the execution flow being relatively

speedy, the count variable is updated

many more times than expected.

For instance, if a single blue card

produces a count of 50, then

dividing the count variable by 50

should yield the correct number

of blue cards. This method, in

theory, should work provided a

very reliable color sensor in a very

controlled environment.

Unfortunately, that is not the

case. The color sensor is far from

being consistent in its reading

and the competition environment

is far from being controlled,

influenced by vibrations, lighting,

etc. Therefore, the first method

would not be an ideal solution in

any measure.

The first method
is to simply divide the

count by the number

of times each blue

card is being counted.

Once the blue card has been

detected, a wait block is added

for the appropriate number of

seconds depending on the speed

of the mBot, which is usually

under 1 second. Despite its

simplicity, the trade-off is costly.

For this entire duration, the

execution of the program halts,

including the line following logic.

The course of action right before

the wait block will be carried out

for this duration. This suggests

that there is a high probability of

going off track whenever the

mBot passes through a blue card.

The second solution
has the advantage
of being extremely

simple to
implement, which is
to simply wait out
the duration of the
car passing a blue

card.

The insightful ones might have a

quick fix for the method above.

Instead of practically doing

nothing for the wait duration,

why not replace the wait block

with a repeat until block that

resumes line following until the

blue card has been past? This

indeed is a very reliable and

rather easy solution to

implement. The following

program utilizes an operator

block called ‘not’. This is a logical

gate block that, as its name

suggests, negates the condition

inside.

The third solution
why not replace the

wait block with a
repeat until block
that resumes line

following until the
blue card has been

past?

Many would be understandably

satisfied with the solution above.

However, it is generally

considered inelegant to have two

segments of code with the exact

same logic. Although the

following final solution is not as

straightforward at first glance, but

it is elegant and introduces an

important concept in

programming – states. In this

case study, the mBot could either

be in the state of passing by a

blue card, or in the state of not

passing by a blue card. A new

variable named ‘onBlueCard’ is

created to represent these two

states, where a value of 0 is

equivalent to ‘no’ and a value of

1 is equivalent to ‘yes’.

the final solution
A new variable

named
‘onBlueCard’ is

created.

The initial state of ‘onBlueCard’ is 0, and the count should

be updated when the state first changes to 1. While the

state is in 1, the goal is to have the count not updated at

all. And once the mBot passes the blue card, the state is

changed back to 0 as well.

Reflection

What is the
initialization of a
variable?

What is overcounting
and what is your
favorite solution?

What are states?
What is the most
confusing part of this
case study to you?

10

Advanced Line Following

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 10 Advanced Line Following

Overview

25 mins

Case Study

25 mins

Reflection

5 mins

Introduce the lesson by
adding new challenges

about line following.

- 10 mins

Show the content and

learning objectives of

this lesson.

- 5 mins

For the purpose

of this lesson,

first explain the

turning radius to

students.

- 5 mins

Explain the

importance

of turning

radius.

- 5 mins

Provide three

programs for

students to

think about

which one

produces the

largest and

smallest

turning radius.

- 15 mins

Let the students think about

how to solve the new
problems. - 10 mins

Four common

but difficult

situations about

line following.

- 5 mins
Program

example for

going

through cross

intersections.

- 15 mins

Program

example for

turning at

cross

intersections.

- 15 mins Program

example for

stopping at

Y-

intersections

- 15 mins

Program

example for

turning at Y-

intersections

- 15 mins Techniques

65 mins

Overview

This lesson delves deeper into

some more advanced usage of the

RGB line follower and various

turning methods that go hand in

hand with line following. As

previously covered in the line

follower lesson, the basic line

following logic using either motor

differential speed or sensor status

works quite well on simple,

uninterrupted tracks. On more

complex tracks such as ones on the

level one competition maps, certain

tasks might simply be out of the

basic method’s depth.

Students can produce a complex

line following program that are

tailored to map features.

Students can understand the

differences among three types of

turning methods.

Students can appropriately

utilize different turning methods

depending on map features.

Students can identify, utilize,

and resolve three common

types of intersections.

On these tracks, the mBot could run

into various types of crosses,

intersections, or markings that exist

to either purposely challenge or

assist contestants. Knowing how to

utilize these challenges as a helping

hand is key to achieving more

during competitions.

Objectives

Case Study

What is turning radius?

Compare and contrast the

following three types of

turning methods, which one

produces the largest and

smallest turning radius?

Turning radius or turning circle is a

rather technical term that carries many

different definitions in the automotive

industry. For the purpose of this lesson,

imagine the mBot is to make a circle,

the turning radius is loosely defined as

the radius of such circle.

Why is turning radius an

important topic?

Turning radius itself in an imaginary

world is hardly important in any

aspect.

However, in real world or especially

in level one competitions, there are

many constraints that limit the

maneuvers of the mBot. Sometimes

these are simply size constraints,

other times it could be strategic,

sensor, or efficiency limitations. In

this aspect, using different methods

to achieve different turning radii

becomes a tool to better

accommodate these constraints.

Techniques

Going Through Cross

Intersections

Going through a cross intersection

is a rather simple problem. When

passing a cross intersection, the

sensor will run into a ‘0000’ status.

And all that needs to be done is to

add an additional condition to the

basic line following logic to also go

forward when sensor status is

‘0000’. There are two ways to do

this either with or without using

logic gates.

Now that students have been

introduced to turning radius and three

types of turning methods, it’s time to

take it to the track. In conjunction with

the line follower, these turning methods

affect the design of line following logic.

Therefore, it is important for students

to perform large number of tastings to

develop a deep understanding their

effects. In the following section, two

common types of intersections will be

introduced. Furthermore, additional

constraints will be added to these

intersections to challenge students to

come up with the most reliable line

following logic.

Advanced line following

techniques

Since the turn at a cross

intersection is 90 digress which is

rather sharp, using the third type of

turning method that produces the

largest turning radius is ruled out.

Despite the default turning method

produces the smallest turning

radius, it is so small that the sensor

might never reach the ’1001’

completion status. What’s left is the

second turning method that fixes

one wheel while turning the other

where the fixed wheel becomes the

center of the turning circle.

Turning at Cross Intersections

However, what would happen if the crossing is rather wide? Under this scenario, it

would take the mBot much longer to go cross the intersection. And during this time

period, it is likely the mBot wouldn’t be able to maintain an absolute straight line

due to friction, weight distribution, battery condition, and so on. Therefore, the

longer it takes the mBot to cross over, the more off track the mBot would be as it

reaches a non ‘0000’ sensor status. Students would have to perform course

correction depending on the sensor status as the mBot goes past the crossing.

Turning at a cross intersection

presents an interesting issue which

involves the choice of turning

method and termination condition.

It should be clear that unlike going

through the intersection, an

additional if condition wouldn’t

work since the turning wouldn’t be

considered complete until the

follower is straight on the track

again.

Stopping at Y-Intersections

Y-intersections are more tricky

compared to cross intersections

just because they come in all

shapes and forms. The split could

be narrow or wide and the junction

area could be small or large.

For this exercise, assume the

junction area is not large enough for

the sensor to read ‘1111’ and that

the split is just wide enough for the

sensor to read ‘0110’ as the mBot

pass through the junction area.

Some might claim that the mBot

could simply turn at status

‘0110’ but they ignore the

fact that before the line

follower could reach the

‘0110’ status it first passes

through some other

potentially undefined

status. And that is due to

the form and shape of a Y-

intersection.

Depending on the way the

line following logic is

designed, in most cases

when an undefined status

appears, the mBot resumes

its previous course of

action. Imagine the split

second before the mBot

gets to the junction area

the sensor reads ‘1101’.

The mBot would turn left

as programmed. If the next

sensor output, as the mBot

is now on the junction area

is undefined, then the

mBot would keep turning

left until the line follower

reaches a defined status.

Therefore, the correct logic

is to let the mBot go

forward in all undefined

cases until ‘0110’ is

reached.

Now all that’s left is to

figure out the turning

method and the

completion condition for

the turn. Although all three

ways of turning could

work, the simplest method

is to let the mBot slowly

merge onto the track until

the sensor status reads

‘1001’ again. Other turning

methods could call for

completion conditions

such as ‘1111’ or others,

which are harder to deal

with and requires more

maneuvers to get straight

back on track.

Turning at Y-Intersections

Reflection

What are the most
confusing topic for you
in this lesson?

How does various
turning radii affect the
position of the mBot?

What would happen if
the line follower runs
into an undefined
sensor status?

11

Advanced
Programming Techniques II

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 11 Advanced Programming Techniques II

Overview

20 mins

Case Study

55 mins

Reflection

5 mins

Mission introduction and

rules explanation.

- 10 mins

Learning objectives

agreement.

- 5 mins

Let the students

read the rules

again and

discuss how to

complete the

mission with

teammates.

- 10 mins

Forming a

formula

concept for the

relationship

among speed,

time and

distance.

- 30 mins

Mission

breakdown

and workflow

planning.

- 15 mins

Mission analysis and

solution brainstorming.

- 5 mins

Program

- 20 mins

Case Analysis

- 20 mins

Programming

40 mins

Overview

In this lesson, students can try to

interpret the task rules and split the

workflow. The problems encountered

in the objective physical environment

are resolved and solved by program

adjustment.

Objectives

I can edit the program to

record the sensor multiple

times and return the value

automatically, and the

average calculation is done

automatically.

 I can consider the

impact of the objective

physical environment on the

execution results of the

program during the

programming process.

I can make a reasonable

workflow split for complex

tasks.

I can calculate the time it

takes for mBot to move

1CM.

I can understand the

operational relationship

between speed, time and

distance.

Case Study

Mission Introduction After the students repeatedly interpret the

rules, they try to complete the workflow

decomposition of the task——

Step 1 - mBot move forward and stop

at the red line.

Step 2 - Measuring the distance

between the red line to the Block A and

memorize it.

Step 3 - Turning right to find the Block

B and stop to face it.

Step 4 - Measuring the distance

between the mBot and the Block B.

Step 5 - Pushing the Block B to the

same distance as the distance between

the red line to the Block A.

Mission Breakdown

Before we face any mission,

we have to complete a

detailed interpretation of the

task rules and a breakdown

of the task workflow.

D1 D2 D3

In this mission, mBot starts from the

starting point and needs to measure

the distance from the red line to

Block A. After that, turn to Block B

and push it the same distance from

the red line to Block A. Preparation

How long does the mBot

need to move 1 cm?

Speed is a measure of how quickly an

object moves from one place to

another. It is equal to the distance

traveled divided by the time. It is

possible to find any of these three

values using the other two.

If we understand the above

formulas for speed, time, and

distance, then we can have a

variety of methods to test and

calculate the time it takes for mBot

to walk 1cm. We can use the ruler

and stopwatch, use mBot to test

the parameters at the same time,

and finally use the calculator to

calculate the unit time used. This

method is feasible, but since it is

considered to be an operation at

the time of timing, there may be a

large error.

In the example below, we are only

Background knowledge

Distance Speed Time Formula

This picture is helpful:

The positions of the words in the

triangle show where they need to go

in the equations. To find the speed,

distance is over time in the triangle, so

speed is distance divided by time. To

find distance, speed is beside time, so

distance is speed multiplied by time.

s = speed (meters/second)

d = distance traveled (meters)

t = time (seconds)

providing a possibility. We

placed a 15 cm position in

front of the mBot with an

obstacle of appropriate

height and a line at a

distance of 5 cm from the

obstacle. Set the movement

speed of the mBot to 30%,

judge the stop by the

returning value of the

ultrasonic wave, and use the

onboard timer to complete

the 10cm travel time. Record

the results of each time

record, then add and divide

by the test to get an average

of 10 cm, and divide this

value by 10 to get an

average time of 1 cm.

Since many objective

reasons, we only use "X" to

represent the time when the

mBot moves 1cm away at

the speed 30%.

Programming

How can we make our sensors return values more accurately?

Here we use the multiple values

collected to calculate the average value.

Is it possible to use more programming

methods to accomplish the functions

similar to the sample program?

V1= the result of the first test of the

distance

V2= the result of the second test of the

distance

V3= the average of the distance

Because we need to

install the functional

structure in the front

of the mBot, here we

extend the distance

between the red line

and the Block A to

15cm.

Can this sample program complete the mBot move forward and

stop on the red line? Can students find some bugs in this sample

program?

Did we use the

same motor

power value as

the mBot move

1cm time

program?

Have you

considered the

effect of the width

of the front obstacle

on the steering

conditions?

Whether to consider

the larger forward

displacement

caused by the inertia

of the car due to the

increased speed？

How can we turn mBot to find Block B?

Can we still complete this task without "wait until"?

When the first look at this question, most people will feel not very complicated. We can

simply use time to control the moving forward distance or the angle of steering.

However, in the extremely complex environment of such objective factors on the field,

any program must ensure its stable enforceability.

After waiting for the trigger button

to start, the mBot advances at a

speed of 30% until the distance to

the obstacle is just less than 15 cm.

Steering to the right with 30%

power until the distance is greater

than 15, continuing to turn until

the distance is less than 18 stops.

Case Analysis

In this program, we did not use "wait until" to get basically the same control

results? Can students try to analyze whether the procedures in this paragraph and

the above procedures have their pros and cons

V1 - The result of the

first test of the distance.

V2 - The result of the

second test of the

distance.

V3 - The average of

the distance.

V4 - The result of the

distance between mBot

and Block B.

V5 - The distance mBot

need to move to push

the Block B.

State - mBot

procedure state.

X - the time of mBot to

move 1 cm.

Reflection

Which part of the
program do you think
is the most difficult
part to understand?

In the machine-
controlled program,
besides considering
the logic of the
program, what other
factors should be
considered?

Can the way of the
sample program be
applied to other
situations?

What do we need to
do between getting
the mission and
programming？

12

Program Picker

Lesson 1 Your First Robot

Teaching Suggestion

Lesson 12 Program Picker

Overview

25 mins

Mechanisms

70 mins

Reflection

5 mins

Introduce the lesson by

announcing a new working

model.

- 10 mins

Learning objectives
agreement.
- 5 mins

Custom blocks analysis.
 - 15 mins

Show the usage of the

custom blocks with

examples.

- 30 mins

Let the students think

about how to write the

program together in the

new working model.

- 10 mins

On- board button

 and its common

mistake. - 10 mins

Timer.

 - 10 mins

Key

Programming

Topic

20 mins

Have students try

on their own.

- 25 mins

Overview

In the lesson, a special utility

program called the program picker is

introduced. Due to the nature of

level one competitions, being able to

pick and choose which automatic

mission to carry out during a restart

is almost a necessity for all

contestants. The program picker

alone is neither a particularly

interesting nor a challenging

program. Taking a closer look

however, the mechanisms that must

be in place in order for the program

picker to function well are thought-

provoking.

Objectives

Students can utilize the

on-board button.

Students can produce a

program picker with a

reliable method of selection.

Students can describe what

parameter is.

Students can reasonably

structure their program in

blocks.

Mechanisms

Introduction

A program picker, as its name

implies, that there must be more

than one program to choose from.

These programs are called custom

blocks in mBlock 5. The usage of

custom blocks introduces a new

way of thinking. Before this lesson,

students wrote a single program to

complete a certain task or mission.

If the task or mission is rather

complex and involves many

different maneuvers, sensor logics,

keeping track of variables, states,

and more, this single program can

easily become enormously lengthy.

This way of programming has two

major issues – first is low

readability, second is low re-
usability.

What are custom blocks?

Why we use custom blocks?

Program readability is important

because it is rare that a single

programmer composes an entire

program by him or herself. MakeX

encourages teamwork where every

contestant contributes to all aspects

of the game. Therefore, a program is

usually shared amongst several

programmers to be worked on at

different times. Low readability

results in longer time for other

programmers to understand the

program. And since a program must

be understood before it’s improved

upon, this leads to extreme

inefficiency.

A single long program is hardly

reusable. Such programs are usually

extremely specialized, designed to

perform one complex task or a

series of smaller tasks in series. Since

the execution flows from top to

bottom until there is no more

instructions to be executed, if only

parts of a program need to be used

elsewhere, the programmer must

pick out those parts and rewrite

another program. This brings up the

topic of program separation that

leads to the reason why custom

blocks are needed.

Suppose the objective is to create

a custom block that uses motor

differential speed to perform line

following. As mentioned in the

lesson on RGB line follower, motor

differential speed goes hand in

hand with turning sensitivity. It is a

reasonable assumption that for

different missions or different

sections of the track, different

turning sensitivities are desired.

And parameters make this

possible. The following example

program dynamically changes the

turning sensitivity.

To do this, simply go under the ‘My

Blocks’ section and click on ‘Make a

Block’. Now there’s the option to name

the custom block and add inputs to

the block.

How to use custom blocks?

Think of the basic line following logic that

has been covered many times in previous

lessons. Since line following is at the heart of

level one competitions, it is almost utilized in

all missions during the automatic stage. For

this reason, it could be thought of as a

standalone component with a specific

functionality. And if a custom block is

created for this functionality, a reasonable

program separation has been achieved.

Inputs are sometimes more officially called

arguments or parameters, provide more

flexibility and room for customization to

programmers.

For the purpose of demonstration,

assume six custom blocks are made each

designed to carry out its own mission and

that the on-board button is used to

perform the selection process. It is worth

mentioning that using the on-board

button is not the only option. In fact,

almost any sensor could be used to

perform this task.

Since there are six programs in total, a

variable could be used to keep track of

which program is currently selected.

To summarize, it is good practice to look

for either repeated instructions or

instructions that carry out certain

reusable functionalities and group them

into custom blocks. These blocks can

have parameters that could be used to

do further customizations.

Now it’s time to

think about how to

perform program

selection!

First is that what happens if the

selection variable goes past the

total number of programs?

In the example program below, a

variable called ‘selection’ is created for

this purpose. And each time the on-

board button is pressed changes the

selection. Once the desired program is

selected, the method used to confirm

the selection is where students can get

very creative. Perhaps the simplest and

most intuitive solution which is

implemented in many modern

electronics is to set a ‘confirmation time’

where if the button hasn’t been pressed

for a certain number of seconds, the

selection is confirmed.

There are two caveats to note –

To address this issue, an if

statement could be added to reset

the selection variable back to ‘1’,

this creates what’s called a rotating

count. This method has the

advantage that if the button has

been accidentally pressed and the

selection goes past the desired

program number, user could

simply keep pressing the button to

rotate back.

Secondly, setting a confirmation

time means using a timer block.

Each time the button is pressed, the

timer must be reset so that each

selection receives the full duration

of confirmation time.

And finally, once the selection has been

confirmed, another custom block called

the ‘executor’ is used to carry out the

selected program. This program is

essentially a series of if statements

stacked together.

Key Programming Topic

On-board button

When using the on-board button,

there’s a common mistake of not

using the ‘button released’ block.

Despite not a particularly severe

mistake, it is logically incorrect

to not do so. In natural language,

pressing the button implies first

pressing down the button and then

releasing it. If only the ‘pressed’

block is used and put into an if

statement, for the very short period

of time that the button is pressed

down before it’s released causes

the if statement being satisfied

many more times than expected

resulting in unreliable programs.

That’s why in most cases students

are encouraged to use the

‘pressed’ block and ‘released’ block

in pairs.

Timer

The timer is started the moment

when the mBot is turned on. It

counts up in seconds and could be

reset any time during program

execution. Each time the timer is

reset, it counts up from 0 second

again.

Reflection

Why is program picker
important for level one
competitions?

What are some
methods of selection
confirmation that you
can think of?

What are some caveats
related to the program
picker?

What is misleading
about saying ‘press the
button once’ in natural
language?

	01. Your First Robot
	02. Makeblock Sensors
	03. Me LED Matrix
	04. RGB Line Follower
	05. Color Sensor
	06. Mp3 Audio Player
	07. Bluetooth Controller
	08. 9g Servo
	09. Advanced Programming Techniques
	10. Advanced Line Following
	11. Advanced Programming Techniques II

